留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年中国肝移植基础研究年度盘点

叶晓勇, 周林, 贺强. 2023年中国肝移植基础研究年度盘点[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024060
引用本文: 叶晓勇, 周林, 贺强. 2023年中国肝移植基础研究年度盘点[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024060
Ye Xiaoyong, Zhou Lin, He Qiang. Summary of basic research on liver transplantation in China of 2023[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024060
Citation: Ye Xiaoyong, Zhou Lin, He Qiang. Summary of basic research on liver transplantation in China of 2023[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024060

2023年中国肝移植基础研究年度盘点

doi: 10.3969/j.issn.1674-7445.2024060
基金项目: 国家自然科学基金(82370665);北京市自然科学基金(7212042、7222303、7232068);北京朝阳医院金种子科研基金(CYJZ202204)
详细信息
    作者简介:
    通讯作者:

    贺强(ORCID 0000-0002-5007-5225),博士,主任医师,研究方向为肝移植与胰腺癌的临床与基础研究,Email: heqiang349@163.com

  • 中图分类号: R617, R575

Summary of basic research on liver transplantation in China of 2023

More Information
  • 摘要: 肝移植是终末期肝病和肝细胞癌的最佳治疗手段,可显著改善患者预后,提高患者生存质量。但排斥反应、免疫耐受、供肝短缺、供肝保存、缺血-再灌注损伤、术后并发症等诸多重难点,限制了肝移植在临床中的应用效果。我国科研团队不断努力,结合新兴技术、多学科交叉等新兴领域的发展,对肝移植相关基础研究做出了巨大贡献。本文就2023年度肝移植基础研究相关的前沿进展进行综述,重点关注中国团队在肝移植基础研究领域取得的进展,以期为促进中国特色融入肝移植领域研究中,加快中国肝移植研究事业和国际接轨,推动我国肝移植事业的进一步发展提供参考。

     

  • [1] MATHURIN P. Early liver transplantation for acute alcoholic hepatitis: we can't say no[J]. J Hepatol, 2021, 75(3): 718-722. DOI: 10.1016/j.jhep.2021.05.019.
    [2] HU X, CHEN R, WEI Q, et al. The landscape of alpha fetoprotein in hepatocellular carcinoma: where are we?[J]. Int J Biol Sci, 2022, 18(2): 536-551. DOI: 10.7150/ijbs.64537.
    [3] QUINTINI C, MUIESAN P, DETRY O, et al. Early allograft dysfunction and complications in DCD liver transplantation: expert consensus statements from the International Liver Transplantation Society[J]. Transplantation, 2021, 105(8): 1643-1652. DOI: 10.1097/TP.0000000000003877.
    [4] ABROL N, JADLOWIEC CC, TANER T. Revisiting the liver's role in transplant alloimmunity[J]. World J Gastroenterol, 2019, 25(25): 3123-3135. DOI: 10.3748/wjg.v25.i25.3123.
    [5] GUO B, ZHOU Q, CHEN J, et al. Orthotopic transplantation of functional bioengineered livers in rats[J]. ACS Biomater Sci Eng, 2023, 9(4): 1940-1951. DOI: 10.1021/acsbiomaterials.2c01213.
    [6] HEO SK, YU HM, KIM DK, et al. LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells[J]. PLoS One, 2023, 18(8): e0289798. DOI: 10.1371/journal.pone.0289798.
    [7] SUZUSHINO S, SATO N, ISHIGAME T, et sl. Tissue-engineered hepatocyte sheets supplemented with adipose-derived stem cells[J]. Tissue Eng Part A, 2023, 29(13/14): 384-396. DOI: 10.1089/ten.TEA.2022.0197.
    [8] XIANG W, WANG X, YU X, et al. Therapeutic efficiency of nasal mucosa-derived ectodermal mesenchymal stem cells in rats with acute hepatic failure[J]. Stem Cells Int, 2023: 6890299. DOI: 10.1155/2023/6890299.
    [9] MIRDAMADI ES, KHOSROWPOUR Z, JAFARI D, et al. 3D-printed PLA/Gel hybrid in liver tissue engineering: effects of architecture on biological functions[J]. Biotechnol Bioeng, 2023, 120(3): 836-851. DOI: 10.1002/bit.28301.
    [10] PENG S, LIANG W, LIU Z, et al. Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway[J]. Hum Cell, 2023,DOI: 10.1007/s13577-023-01012-3[Epub ahead of print].
    [11] BAI Y, SHI JH, LIU Q, et al. Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(5): 166686. DOI: 10.1016/j.bbadis.2023.166686.
    [12] HAUTZ T, SALCHER S, FODOR M, et al. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver[J]. Nat Commun, 2023, 14(1): 2285. DOI: 10.1038/s41467-023-37674-8.
    [13] CLARKE G, MAO J, FAN Y, et al. N-acetylcysteine: a novel approach to methaemoglobinaemia in normothermic liver machine perfusion[J]. Sci Rep, 2023, 13(1): 19022. DOI: 10.1038/s41598-023-45206-z.
    [14] LAU NS, LY M, DENNIS C, et al. Long-term ex situ normothermic perfusion of human split livers for more than 1 week[J]. Nat Commun, 2023, 14(1): 4755. DOI: 10.1038/s41467-023-40154-8.
    [15] SOUSA DA SILVA RX, BAUTISTA BORREGO L, LENGGENHAGER D, et al. Defatting of human livers during long-term ex situ normothermic perfusion: novel strategy to rescue discarded organs for transplantation[J]. Ann Surg, 2023, 278(5): 669-675. DOI: 10.1097/SLA.0000000000006047.
    [16] LIU Q, DEL PRETE L, ALI K, et al. Sequential hypothermic and normothermic perfusion preservation and transplantation of expanded criteria donor livers[J]. Surgery, 2023, 173(3): 846-854. DOI: 10.1016/j.surg.2022.07.035.
    [17] KIM J, ZIMMERMAN MA, SHIN WY, et al. Effects of subnormothermic regulated hepatic reperfusion on mitochondrial and transcriptomic profiles in a porcine model[J]. Ann Surg, 2023, 277(2): e366-e375. DOI: 10.1097/SLA.0000000000005156.
    [18] EDEN J, BREUER E, BIRRER D, et al. Screening for mitochondrial function before use-routine liver assessment during hypothermic oxygenated perfusion impacts liver utilization[J]. EBioMedicine, 2023, 98: 104857. DOI: 10.1016/j.ebiom.2023.104857.
    [19] COX DRA, LEE E, WONG BKL, et al. Graft-derived cfDNA monitoring in plasma and bile during normothermic machine perfusion in liver transplantation is feasible and a potential tool for assessing graft viability[J]. Transplantation, 2023,DOI: 10.1097/TP.0000000000004842[Epub ahead of print].
    [20] HOFMANN J, MESZAROS AT, BUCH ML, et al. Bioenergetic and cytokine profiling may help to rescue more DCD livers for transplantation[J]. Int J Mol Sci, 2023, 24(11): 9536. DOI: 10.3390/ijms24119536.
    [21] ZHANG B, HAN B, GAO F, et al. Fk506 inhibit liver regeneration in HOC model rat[J]. Transplant Proc, 2023, 55(3): 637-642. DOI: 10.1016/j.transproceed.2023.02.054.
    [22] MA J, YANG Z, HUANG Z, et al. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish[J]. Hepatology, 2023, 78(1): 167-178. DOI: 10.1097/HEP.0000000000000186.
    [23] ZHENG W, YANG L, JIANG S, et al. Role of Kupffer cells in tolerance induction after liver transplantation[J]. Front Cell Dev Biol, 2023, 11: 1179077. DOI: 10.3389/fcell.2023.1179077.
    [24] WANG J, MA Y, WANG J. miR-27a-5p inhibits acute rejection of liver transplantation in rats by inducing M2 polarization of Kupffer cells through the PI3K/Akt pathway[J]. Cytokine, 2023, 165: 156085. DOI: 10.1016/j.cyto.2022.156085.
    [25] ZHOU M, HUI J, GAO L, et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate acute rejection injury after liver transplantation by carrying miR-22-3p and inducing M2 polarization of Kupffer cells[J]. J Gene Med, 2023, 25(7): e3497. DOI: 10.1002/jgm.3497.
    [26] SONG C, WANG G, MA X, et al. The effect of miR-155-5p on M1 polarization of Kupffer cells and immune response during liver transplantation through regulating the expression of KDM5D[J]. Mol Immunol, 2023, 155: 17-26. DOI: 10.1016/j.molimm.2023.01.003.
    [27] CAO ZR, ZHENG WX, JIANG YX, et al. miR-449a ameliorates acute rejection after liver transplantation via targeting procollagen-lysine1, 2-oxoglutarate5-dioxygenase 1 in macrophages[J]. Am J Transplant, 2023, 23(3): 336-352. DOI: 10.1016/j.ajt.2022.12.009.
    [28] TERRY AQ, KOJIMA H, SOSA RA, et al. Disulfide-HMGB1 signals through TLR4 and TLR9 to induce inflammatory macrophages capable of innate-adaptive crosstalk in human liver transplantation[J]. Am J Transplant, 2023, 23(12): 1858-1871. DOI: 10.1016/j.ajt.2023.08.002.
    [29] KOJIMA H, KADONO K, HIRAO H, et al. T cell CEACAM1-TIM-3 crosstalk alleviates liver transplant injury in mice and humans[J]. Gastroenterology, 2023, 165(5): 1233-1248. DOI: 10.1053/j.gastro.2023.07.004.
    [30] CUI B, CHEN XJ, SUN J, et al. Dendritic cells originating exosomal miR-193b-3p induces regulatory T cells to alleviate liver transplant rejection[J]. Int Immunopharmacol, 2023, 114: 109541. DOI: 10.1016/j.intimp.2022.109541.
    [31] FANG Y, BIAN C, LI Z, et al. ScRNA-seq revealed disruption in CD8+NKG2A+natural killer T cells in patients after liver transplantation and immunosuppressive therapy[J]. Immun Inflamm Dis, 2023, 11(9): e990. DOI: 10.1002/iid3.990.
    [32] SONG S, ZHI Y, TIAN G, et al. Immature and activated phenotype of blood NK cells is associated with acute rejection in adult liver transplant[J]. Liver Transpl, 2023, 29(8): 836-848. DOI: 10.1097/LVT.0000000000000139.
    [33] TRAN LM, MACEDO C, ZAHORCHAK AF, et al. Donor-derived regulatory dendritic cell infusion modulates effector CD8+T cell and NK cell responses after liver transplantation[J]. Sci Transl Med, 2023, 15(717): eadf4287. DOI: 10.1126/scitranslmed.adf4287.
    [34] CHEN Q, YANG Z, LIN H, et al. Comparative effects of hepatocyte growth factor and tacrolimus on acute liver allograft early tolerance[J]. Front Immunol, 2023, 14: 1162439. DOI: 10.3389/fimmu.2023.1162439.
    [35] WANG H, LI C, XIONG Z, et al. Luteolin attenuates acute liver allograft rejection in rats by inhibiting T cell proliferation and regulating T cell subsets[J]. Int Immunopharmacol, 2023, 121: 110407. DOI: 10.1016/j.intimp.2023.110407.
    [36] YOO HJ, YI Y, KANG Y, et al. Reduced ceramides are associated with acute rejection in liver transplant patients and skin graft and hepatocyte transplant mice, reducing tolerogenic dendritic cells[J]. Mol Cells, 2023, 46(11): 688-699. DOI: 10.14348/molcells.2023.0104.
    [37] TAJIMA T, HATA K, KUSAKABE J, et al. Anti-complement 5 antibody ameliorates antibody-mediated rejection after liver transplantation in rats[J]. Front Immunol, 2023, 14: 1186653. DOI: 10.3389/fimmu.2023.1186653.
    [38] CHENG P, LI Z, FU Z, et al. Small-for-size syndrome and graft inflow modulation techniques in liver transplantation[J]. Dig Dis, 2023, 41(2): 250-258. DOI: 10.1159/000525540.
    [39] ZHANG C, SHENG M, LV J, et al. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia-reperfusion[J]. Int Immunopharmacol, 2023, 124(Pt B): 111043. DOI: 10.1016/j.intimp.2023.111043.
    [40] XIAO X, CHEN S, HUANG Z, et al. SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice[J]. Br J Pharmacol, 2023, 180(24): 3234-3253. DOI: 10.1111/bph.16175.
    [41] LU D, YANG X, PAN L, et al. Dynamic immune cell profiling identified natural killer cell shift as the key event in early allograft dysfunction after liver transplantation[J]. Cell Prolif, 2023,DOI: 10.1111/cpr.13568[Epub ahead of print].
    [42] KULIK U, MOESTA C, SPANEL R, et al. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts[J]. Transl Res, 2024, 264: 33-65. DOI: 10.1016/j.trsl.2023.09.006.
    [43] SONG Z, HAN H, GE X, et al. Deficiency of neutrophil high-mobility group box-1 in liver transplant recipients exacerbates early allograft injury in mice[J]. Hepatology, 2023, 78(3): 771-786. DOI: 10.1097/HEP.0000000000000346.
    [44] ZHANG Y, WANG Z, ZHAO L, et al. Comprehensive evaluation of circRNAs in cirrhotic cardiomyopathy before and after liver transplantation[J]. Int Immunopharmacol, 2023, 114: 109495. DOI: 10.1016/j.intimp.2022.109495.
    [45] ZHANG Z, XU L, QIU X, et al. Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy[J]. J Zhejiang Univ Sci B, 2023, 24(6): 485-495. DOI: 10.1631/jzus.B2200562.
    [46] CHEN LJ, XIN Y, YUAN MX, et al. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation[J]. Am J Physiol Cell Physiol, 2023, 325(3): C796-C806. DOI: 10.1152/ajpcell.00462.2022.
    [47] GUO Z, CHEN Q, LIU J, et al. Effects of CYP3A5 Genotypes on thrombocytopenia in liver transplantation patients treated with tacrolimus[J]. Biomedicines, 2023, 11(11): 3088. DOI: 10.3390/biomedicines11113088.
    [48] MOON JJ, HONG SK, KIM YC, et al. Soluble suppression of tumorigenicity 2 is a potential predictor of post-liver transplant renal outcomes[J]. PLoS One, 2023, 18(11): e0293844. DOI: 10.1371/journal.pone.0293844.
    [49] GHEITASI I, DOUSTIMOTLAGH AH, KOKHDAN EP, et al. Renoprotective effects of zinc sulfate against transient liver ischemia/reperfusion injury in rats[J]. Heliyon, 2023, 9(5): e15505. DOI: 10.1016/j.heliyon.2023.e15505.
    [50] SAEKI M, MUNESUE S, HIGASHI Y, et al. Assaying ADAMTS13 activity as a potential prognostic biomarker for sinusoidal obstruction syndrome in mice[J]. Int J Mol Sci, 2023, 24(22): 16328. DOI: 10.3390/ijms242216328.
    [51] GENG H, CHEN J, TU K, et al. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis[J]. J Nanobiotechnology, 2023, 21(1): 500. DOI: 10.1186/s12951-023-02234-1.
    [52] HUANG F, DENG Z, ZHANG Q, et al. Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury[J]. Transl Res, 2023, 262: 44-59. DOI: 10.1016/j.trsl.2023.07.008.
    [53] ZHOU S, RAO Z, XIA Y, et al. CCAAT/enhancer-binding protein homologous protein promotes ros-mediated liver ischemia and reperfusion injury by inhibiting mitophagy in hepatocytes[J]. Transplantation, 2023, 107(1): 129-139. DOI: 10.1097/TP.0000000000004244.
    [54] BAO Q, WANG Z, CHENG S, et al. Peptidomic analysis reveals that novel peptide LDP2 protects against hepatic ischemia/reperfusion injury[J]. J Clin Transl Hepatol, 2023, 11(2): 405-415. DOI: 10.14218/JCTH.2022.00094.
    [55] LI J, YU D, HE C, et al. KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy[J]. Cell Death Dis, 2023, 14(7): 393. DOI: 10.1038/s41419-023-05872-3.
    [56] ZHANG Y, WANG Z, JIA C, et al. Blockade of hepatocyte PCSK9 ameliorates hepatic ischemia-reperfusion injury by promoting pink1-parkin-mediated mitophagy[J]. Cell Mol Gastroenterol Hepatol, 2024, 17(1): 149-169. DOI: 10.1016/j.jcmgh.2023.09.004.
    [57] ZHU S, WANG X, CHEN H, et al. Hippo (YAP)-autophagy axis protects against hepatic ischemia-reperfusion injury through JNK signaling[J]. Chin Med J (Engl), 2023,DOI: 10.1097/CM9.0000000000002727[Epub ahead of print].
    [58] LI C, WU Y, CHEN K, et al. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis[J]. Cell Death Dis, 2023, 14(12): 810. DOI: 10.1038/s41419-023-06294-x.
    [59] TIAN X, WANG Y, YUAN M, et al. Heme Oxygenase-1-modified BMMSCs activate AMPK-Nrf2-FTH1 to reduce severe steatotic liver ischemia-reperfusion injury[J]. Dig Dis Sci, 2023, 68(11): 4196-4211. DOI: 10.1007/s10620-023-08102-0.
    [60] TIAN X, WU L, LI X, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate biliary ischemia reperfusion injury in fatty liver transplantation by inhibiting ferroptosis[J]. Mol Cell Biochem, 2023,DOI: 10.1007/s11010-023-04770-8[Epub ahead of print].
    [61] ZUO H, WANG Y, YUAN M, et al. Small extracellular vesicles from HO-1-modified bone marrow-derived mesenchymal stem cells attenuate ischemia-reperfusion injury after steatotic liver transplantation by suppressing ferroptosis via miR-214-3p[J]. Cell Signal, 2023, 109: 110793. DOI: 10.1016/j.cellsig.2023.110793.
    [62] TONG L, LIU R, YANG Y, et al. Ghrelin protects against ischemia/reperfusion-induced hepatic injury via inhibiting Caspase-11-mediated noncanonical pyroptosis[J]. Transpl Immunol, 2023, 80: 101888. DOI: 10.1016/j.trim.2023.101888.
    [63] WANG T, FANG Y, ZHANG X, et al. Heme oxygenase-1 alleviates ischemia-reperfusion injury by inhibiting hepatocyte pyroptosis after liver transplantation in rats[J]. Front Biosci (Landmark Ed), 2023, 28(10): 275. DOI: 10.31083/j.fbl2810275.
    [64] ZOU Z, SHANG R, ZHOU L, et al. The novel MyD88 inhibitor TJ-M2010-5 protects against hepatic ischemia-reperfusion injury by suppressing pyroptosis in mice[J]. Transplantation, 2023, 107(2): 392-404. DOI: 10.1097/TP.0000000000004317.
    [65] DERY KJ, KOJIMA H, KAGEYAMA S, et al. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans[J]. Sci Transl Med, 2023, 15(707): eadf2059. DOI: 10.1126/scitranslmed.adf2059.
    [66] HIRAO H, KOJIMA H, DERY KJ, et al. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation[J]. J Clin Invest, 2023, 133(3): e162940. DOI: 10.1172/JCI162940.
    [67] YAO Z, LIU N, LIN H, et al. Proanthocyanidin alleviates liver ischemia/reperfusion injury by suppressing autophagy and apoptosis via the PPARα/PGC1α signaling pathway[J]. J Clin Transl Hepatol, 2023, 11(6): 1329-1340. DOI: 10.14218/JCTH.2023.00071.
    [68] ZHANG Y, ZHAO X, CAO Y, et al. Bioactive indole alkaloid from Aspergillus amoenus TJ507 that ameliorates hepatic ischemia/reperfusion injury[J]. J Nat Prod, 2023, 86(8): 2059-2064. DOI: 10.1021/acs.jnatprod.3c00251.
    [69] ZHANG Y, WEI H, WANG M, et al. Dexmedetomidine alleviates ferroptosis following hepatic ischemia-reperfusion injury by upregulating Nrf2/GPx4-dependent antioxidant responses[J]. Biomed Pharmacother, 2023, 169: 115915. DOI: 10.1016/j.biopha.2023.115915.
    [70] ZHU C, SHI S, JIANG P, et al. Curcumin alleviates hepatic ischemia-reperfusion injury by inhibiting neutrophil extracellular traps formation[J]. J Invest Surg, 2023, 36(1): 2164813. DOI: 10.1080/08941939.2022.2164813.
    [71] PRESS AT, UNGELENK L, MEDYUKHINA A, et al. Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury[J]. Free Radic Biol Med, 2023, 204: 151-160. DOI: 10.1016/j.freeradbiomed.2023.04.012.
    [72] MAHMOUD HM, ELSAYED ABOUZED DE, ABO-YOUSSEF AM, et al. Zafirlukast protects against hepatic ischemia-reperfusion injury in rats via modulating Bcl-2/Bax and NF-κB/SMAD-4 pathways[J]. Int Immunopharmacol, 2023, 122: 110498. DOI: 10.1016/j.intimp.2023.110498.
    [73] GU L, ZHANG F, WU J, et al. Nanotechnology in drug delivery for liver fibrosis[J]. Front Mol Biosci, 2022, 8: 804396. DOI: 10.3389/fmolb.2021.804396.
    [74] WANG H, YANG R, WANG Z, et al. Metronomic capecitabine with rapamycin exerts an immunosuppressive effect by inducing ferroptosis of CD4+T cells after liver transplantation in rat[J]. Int Immunopharmacol, 2023, 124(Pt A): 110810. DOI: 10.1016/j.intimp.2023.110810.
    [75] LIU H, YEUNG WHO, PANG L, et al. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts[J]. JHEP Rep, 2023, 5(12): 100895. DOI: 10.1016/j.jhepr.2023.100895.
    [76] YE Q, ZHOU W, XU S, et al. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma[J]. MedComm (2020), 2023, 4(6): e439. DOI: 10.1002/mco2.439.
    [77] GUO F, YUAN X, CAO J, et al. RNA-Seq and immune repertoire analysis of normal and hepatocellular carcinoma relapse after liver transplantation[J]. Int J Gen Med, 2023, 16: 4329-4341. DOI: 10.2147/IJGM.S421016.
    [78] ZENG Q, CAO J, NIU Y, et al. Identification of recurrence-related mRNAs and noncoding RNAs in hepatocellular carcinoma following liver transplantation[J]. Turk J Gastroenterol, 2023, 34(4): 394-405. DOI: 10.5152/tjg.2023.22656.
    [79] JIANG Z, WEI Z, CHEN J, et al. BZW2, CDT1 and IVD act as biomarkers for predicting hepatocellular carcinoma[J]. Curr Cancer Drug Targets, 2023, 23(3): 211-221. DOI: 10.2174/1568009622666220901121641.
    [80] YANG Z, XIE H, WAN J, et al. A nanotherapeutic strategy that engages cytotoxic and immunosuppressive activities for the treatment of cancer recurrence following organ transplantation[J]. EBioMedicine, 2023, 92: 104594. DOI: 10.1016/j.ebiom.2023.104594.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 网络出版日期:  2024-03-25

目录

    /

    返回文章
    返回