留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CD47在肾移植中的最新研究与展望

陈羽翔, 李卓骋, 高亮, 等. CD47在肾移植中的最新研究与展望[J]. 器官移植, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005
引用本文: 陈羽翔, 李卓骋, 高亮, 等. CD47在肾移植中的最新研究与展望[J]. 器官移植, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005
Chen Yuxiang, Li Zhuocheng, Gao Liang, et al. Latest research and prospect of CD47 in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005
Citation: Chen Yuxiang, Li Zhuocheng, Gao Liang, et al. Latest research and prospect of CD47 in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005

CD47在肾移植中的最新研究与展望

doi: 10.3969/j.issn.1674-7445.2024005
基金项目: 海南省自然科学基金(820RC766、821QN413);海南省临床医学中心建设项目;海南省研究生创新科研课题(Qhys2022-227);海南医学院研究生创新科研课题(HYYB2022A07)
详细信息
    作者简介:
    通讯作者:

    蒋鸿涛(ORCID 0000-0001-9716-3233),主任医师,医学硕士,硕士研究生导师,研究方向为肾移植,Email:jht20032003@163.com

  • 中图分类号: R617, R392

Latest research and prospect of CD47 in kidney transplantation

More Information
  • 摘要: CD47是一种广泛表达于细胞表面的跨膜蛋白,被认为是细胞发生免疫逃逸的关键分子。随着相关研究日益增多,CD47及其配体参与的免疫调节作用逐渐被人们所知晓。近年来,多项研究探讨了CD47在同种异体肾移植缺血-再灌注损伤、排斥反应以及异种肾移植中的作用,但具体作用还有待明确,关键机制仍不清楚。因此,本文从CD47的结构和功能、CD47的常见配体、CD47与肾移植的关系以及CD47在肾移植中的应用进行综述,总结CD47在肾移植中的最新研究进展,分析现有研究的不足和未来研究的方向,以期为后续CD47在同种和异种肾移植中的应用提供参考。

     

  • FIG. 3001.  FIG. 3001.

    FIG. 3001..  FIG. 3001.

  • [1] LECLAIR P, LIM CJ. CD47 (cluster of differentiation 47): an anti-phagocytic receptor with a multitude of signaling functions[J]. Anim Cells Syst (Seoul), 2020, 24(5): 243-252. DOI: 10.1080/19768354.2020.1818618.
    [2] MORDUE KE, HAWLEY BR, SATCHWELL TJ, et al. CD47 surface stability is sensitive to actin disruption prior to inclusion within the band 3 macrocomplex[J]. Sci Rep, 2017, 7(1): 2246. DOI: 10.1038/s41598-017-02356-1.
    [3] ERDEM N, CHEN KT, QI M, et al. Thrombospondin-1, CD47, and SIRPα display cell-specific molecular signatures in human islets and pancreata[J]. Am J Physiol Endocrinol Metab, 2023, 324(4): E347-E357. DOI: 10.1152/ajpendo.00221.2022.
    [4] MONTERO E, ISENBERG JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era[J]. Cancer Immunol Immunother, 2023, 72(9): 2879-2888. DOI: 10.1007/s00262-023-03465-9.
    [5] WANG Q, ONUMA K, LIU C, et al. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis[J]. JCI Insight, 2019, 4(18): e128616. DOI: 10.1172/jci.insight.128616.
    [6] FRAZIER WA, GAO AG, DIMITRY J, et al. The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi[J]. J Biol Chem, 1999, 274(13): 8554-8560. DOI: 10.1074/jbc.274.13.8554.
    [7] HAYAT SMG, BIANCONI V, PIRRO M, et al. CD47: role in the immune system and application to cancer therapy[J]. Cell Oncol (Dordr), 2020, 43(1): 19-30. DOI: 10.1007/s13402-019-00469-5.
    [8] YU J, LI S, CHEN D, et al. Crystal structure of human CD47 in complex with engineered SIRPα. D1(N80A)[J]. Molecules, 2022, 27(17): 5574. DOI: 10.3390/molecules27175574.
    [9] XU C, JIN G, WU H, et al. SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling[J]. J Clin Invest, 2022, 132(5): e141797. DOI: 10.1172/JCI141797.
    [10] 中华医学会血液学分会红细胞疾病(贫血)学组. 中国成人自身免疫性溶血性贫血诊疗指南(2023年版)[J]. 中华血液学杂志, 2023, 44(1): 12-18. DOI: 10.3760/cma.j.issn.0253-2727.2023.01.003.

    Red Blood Cell Disease (Anemia) Group of Branch of Hematology of Chinese Medical Association. Chinese guideline for the diagnosis and treatment of adult autoimmune hemolytic anemia (2023)[J]. Chin J Hematol, 2023, 44(1): 12-18. DOI: 10.3760/cma.j.issn.0253-2727.2023.01.003.
    [11] 揭晓亮, 孔阳阳, 周光飚. CD47在肿瘤免疫逃逸中的作用及靶向治疗策略研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 455-461. DOI: 10.12182/20230560101.

    JIE XL, KONG YY, ZHOU GB. Latest findings on the role of CD47 in tumor immune evasion and related targeted therapies[J]. J Sichuan Univ (Med Sci), 2023, 54(3): 455-461. DOI: 10.12182/20230560101.
    [12] PAN L, WANG B, CHEN M, et al. Lack of SIRP-alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils[J]. Cell Prolif, 2023, 56(2): e13361. DOI: 10.1111/cpr.13361.
    [13] 陈婧, 黄泽宇, 周学东, 等. CD47分子相关信号通路及CD47在病原感染中的研究进展[J]. 四川大学学报(医学版), 2022, 53(3): 523-527. DOI: 10.12182/20220560501.

    CHEN J, HUANG ZY, ZHOU XD, et al. Research progress of CD47-related signaling pathway and the role of CD47 in pathogenic infection[J]. J Sichuan Univ (Med Sci), 2022, 53(3): 523-527. DOI: 10.12182/20220560501.
    [14] ROBERTS DD. Thrombospondins: from structure to therapeutics[J]. Cell Mol Life Sci, 2008, 65(5): 669-671. DOI: 10.1007/s00018-007-7483-2.
    [15] OLDENBORG PA. CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease[J]. ISRN Hematol, 2013: 614619. DOI: 10.1155/2013/614619.
    [16] CHUNG EYM, TRINH K, LI J, et al. Biomarkers in cardiorenal syndrome and potential insights into novel therapeutics[J]. Front Cardiovasc Med, 2022, 9: 868658. DOI: 10.3389/fcvm.2022.868658.
    [17] SINGLA B, AITHBATHULA RV, PERVAIZ N, et al. CD47 activation by thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2023, 43(7): 1234-1250. DOI: 10.1161/ATVBAHA.122.318904.
    [18] ISENBERG JS, ROBERTS DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury[J]. Pediatr Nephrol, 2019, 34(12): 2479-2494. DOI: 10.1007/s00467-018-4123-z.
    [19] JULOVI SM, SANGANERIA B, MINHAS N, et al. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis[J]. Lab Invest, 2020, 100(9): 1184-1196. DOI: 10.1038/s41374-020-0434-3.
    [20] WANG X, XU M, JIA J, et al. CD47 blockade reduces ischemia/reperfusion injury in donation after cardiac death rat kidney transplantation[J]. Am J Transplant, 2018, 18(4): 843-854. DOI: 10.1111/ajt.14523.
    [21] WANG Z, GUO H, XU R, et al. The effects of cell surface CD47 downregulation on ischaemia-reperfusion injury during pig liver transplantation[J]. Int J Exp Pathol, 2021, 102(3): 140-147. DOI: 10.1111/iep.12391.
    [22] SHI L, SONG Z, LI C, et al. HDAC6 inhibition alleviates ischemia- and cisplatin-induced acute kidney injury by promoting autophagy[J]. Cells, 2022, 11(24): 3951. DOI: 10.3390/cells11243951.
    [23] EL-RASHID M, GHIMIRE K, SANGANERIA B, et al. CD47 limits autophagy to promote acute kidney injury[J]. FASEB J, 2019, 33(11): 12735-12749. DOI: 10.1096/fj.201900120RR.
    [24] GARCIA-AROZ S, XU M, AHMED O, et al. Improving liver graft function using CD47 blockade in the setting of normothermic machine perfusion[J]. Transplantation, 2022, 106(1): 37-47. DOI: 10.1097/TP.0000000000003688.
    [25] ŠVACHOVÁ V, KRUPIČKOVÁ L, NOVOTNÝ M, et al. Changes in phenotypic patterns of blood monocytes after kidney transplantation and during acute rejection[J]. Physiol Res, 2021, 70(5): 709-721. DOI: 10.33549/physiolres.934700.
    [26] CHEN M, WANG Y, WANG H, et al. Elimination of donor CD47 protects against vascularized allograft rejection in mice[J]. Xenotransplantation, 2019, 26(2): e12459. DOI: 10.1111/xen.12459.
    [27] PENGAM S, DURAND J, USAL C, et al. SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells[J]. Am J Transplant, 2019, 19(12): 3263-3275. DOI: 10.1111/ajt.15497.
    [28] VAN DUIJN A, VAN DER BURG SH, SCHEEREN FA. CD47/SIRPα axis: bridging innate and adaptive immunity[J]. J Immunother Cancer, 2022, 10(7): e004589. DOI: 10.1136/jitc-2022-004589.
    [29] QU T, ZHONG T, PANG X, et al. Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity[J]. J Immunother Cancer, 2022, 10(11): e005517. DOI: 10.1136/jitc-2022-005517.
    [30] YUAN Z, YE L, FENG X, et al. YAP-dependent induction of CD47-enriched extracellular vesicles inhibits dendritic cell activation and ameliorates hepatic ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021: 6617345. DOI: 10.1155/2021/6617345.
    [31] NATH PR, GANGAPLARA A, PAL-NATH D, et al. CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus[J]. Front Immunol, 2018, 9: 2985. DOI: 10.3389/fimmu.2018.02985.
    [32] DEUSE T, HU X, AGBOR-ENOH S, et al. The SIRPα-CD47 immune checkpoint in NK cells[J]. J Exp Med, 2021, 218(3): e20200839. DOI: 10.1084/jem.20200839.
    [33] WANG S, WU Q, CHEN T, et al. Blocking CD47 promotes antitumour immunity through CD103+ dendritic cell-NK cell axis in murine hepatocellular carcinoma model[J]. J Hepatol, 2022, 77(2): 467-478. DOI: 10.1016/j.jhep.2022.03.011.
    [34] HU X, WHITE K, OLROYD AG, et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques[J]. Nat Biotechnol, 2023,DOI: 10.1038/s41587-023-01784-x[Epub ahead of print
    [35] KIM JI, PARK JS, KWAK J, et al. CRISPR/Cas9-mediated knockout of CD47 causes hemolytic anemia with splenomegaly in C57BL/6 mice[J]. Lab Anim Res, 2018, 34(4): 302-310. DOI: 10.5625/lar.2018.34.4.302.
    [36] DEHMANI S, NERRIÈRE-DAGUIN V, NÉEL M, et al. SIRPγ-CD47 interaction positively regulates the activation of human T cells in situation of chronic stimulation[J]. Front Immunol, 2021, 12: 732530. DOI: 10.3389/fimmu.2021.732530.
    [37] HU Y, ZHOU H, GAO B, et al. Role of regulatory T cells in CD47/donor-specific transfusion-induced immune tolerance in skin-heart transplantation mice[J]. Transpl Infect Dis, 2019, 21(1): e13012. DOI: 10.1111/tid.13012.
    [38] GHEIBIHAYAT SM, CABEZAS R, NIKIFOROV NG, et al. CD47 in the brain and neurodegeneration: an update on the role in neuroinflammatory pathways[J]. Molecules, 2021, 26(13): 3943. DOI: 10.3390/molecules26133943.
    [39] UPTON R, BANUELOS A, FENG D, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance[J]. Proc Natl Acad Sci U S A, 2021, 118(29): e2026849118. DOI: 10.1073/pnas.2026849118.
    [40] EVERS M, RÖSNER T, DÜNKEL A, et al. The selection of variable regions affects effector mechanisms of IgA antibodies against CD20[J]. Blood Adv, 2021, 5(19): 3807-3820. DOI: 10.1182/bloodadvances.2021004598.
    [41] MAEDA A, KOGATA S, TOYAMA C, et al. The innate cellular immune response in xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
    [42] NOMURA S, ARIYOSHI Y, WATANABE H, et al. Transgenic expression of human CD47 reduces phagocytosis of porcine endothelial cells and podocytes by baboon and human macrophages[J]. Xenotransplantation, 2020, 27(1): e12549. DOI: 10.1111/xen.12549.
    [43] SINGIREDDY S, TULLY A, GALINDO J, et al. Genetic engineering of donor pig for the first human cardiac xenotransplantation: combatting rejection, coagulopathy, inflammation, and excessive growth[J]. Curr Cardiol Rep, 2023, 25(11): 1649-1656. DOI: 10.1007/s11886-023-01978-4.
    [44] LI T, LV Y, SUN R, et al. Incompatibility between recipient CD47 and donor SIRPα is not a key risk factor for thrombocytopenia or anemia following rat liver xenotransplantation in mice[J]. Xenotransplantation, 2021, 28(3): e12657. DOI: 10.1111/xen.12657.
    [45] BOUWSTRA R, VAN MEERTEN T, BREMER E. CD47-SIRPα blocking-based immunotherapy: current and prospective therapeutic strategies[J]. Clin Transl Med, 2022, 12(8): e943. DOI: 10.1002/ctm2.943.
    [46] 罗登科. 成人肾移植术后糖尿病的危险因素单中心分析[D]. 海口: 海南医学院, 2022.
    [47] ROBERTS DD, ISENBERG JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes[J]. Am J Physiol Cell Physiol, 2021, 321(2): C201-C213. DOI: 10.1152/ajpcell.00175.2021.
    [48] ZHAO W, SHEN B, CHENG Q, et al. Roles of TSP1-CD47 signaling pathway in senescence of endothelial cells: cell cycle, inflammation and metabolism[J]. Mol Biol Rep, 2023, 50(5): 4579-4585. DOI: 10.1007/s11033-023-08357-w.
    [49] SHI H, WANG X, LI F, et al. CD47-SIRPα axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis[J]. Sci Transl Med, 2022, 14(672): eabp8309. DOI: 10.1126/scitranslmed.abp8309.
    [50] KUEHN BM. First pig-to-human heart transplant marks a milestone in xenotransplantation[J]. Circulation, 2022, 145(25): 1870-1871. DOI: 10.1161/CIRCULATIO NAHA.122.060418.
    [51] SHRESTHA P, BATRA L, TARIQ MALIK M, et al. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation[J]. Am J Transplant, 2020, 20(10): 2703-2714. DOI: 10.1111/ajt.15958.
  • 加载中
图(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  65
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回