留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下调GSK3β通过抑制ITPR1-GRP75-VDAC1复合体功能减轻衰老肾小管上皮细胞缺氧/复氧损伤

倪海强, 顾世琦, 彭宣, 等. 下调GSK3β通过抑制ITPR1-GRP75-VDAC1复合体功能减轻衰老肾小管上皮细胞缺氧/复氧损伤[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024018
引用本文: 倪海强, 顾世琦, 彭宣, 等. 下调GSK3β通过抑制ITPR1-GRP75-VDAC1复合体功能减轻衰老肾小管上皮细胞缺氧/复氧损伤[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024018
Ni Haiqiang, Gu Shiqi, Peng Xuan, et al. Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024018
Citation: Ni Haiqiang, Gu Shiqi, Peng Xuan, et al. Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024018

下调GSK3β通过抑制ITPR1-GRP75-VDAC1复合体功能减轻衰老肾小管上皮细胞缺氧/复氧损伤

doi: 10.3969/j.issn.1674-7445.2024018
基金项目: 国家自然科学基金(82170772、82370759);湖北陈孝平科技发展基金会青年科学专项基金(CXPJJH122001-2210)
详细信息
    作者简介:
    通讯作者:

    宫念樵(ORCID 0000-0001-7634-1440),博士,主任医师,研究方向为器官移植、移植免疫、干细胞治疗和器官老化,Email:nqgong@tjh.tjmu.edu.cn

  • 中图分类号: R617,R692

Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex

More Information
  • 摘要:   目的   探讨糖原合成酶激酶3β(GSK3β)对衰老小鼠原代肾小管上皮细胞(RTEC)缺氧/复氧(H/R)损伤的影响及其调控机制。  方法  将RTEC分成为Young组即正常生长的年轻RTEC、Old组即使用Etoposide诱导的衰老RTEC、Old+Ad-shNC+H/R组即使用Etoposide诱导衰老再转染腺病毒阴性对照(Ad-shNC)后进行H/R处理,Old+Ad-shGSK3β+H/R组即使用Etoposide诱导衰老后再转染靶向沉默GSK3β的短发夹RNA腺病毒(Ad-shGSK3β)后进行H/R处理。采用流式细胞术检测各组细胞凋亡水平和线粒体活性氧水平,采用免疫荧光染色法检测各组钙离子水平,采用蛋白质印迹法检测各组GSK3β、线粒体相关的内质网膜结构(MAM)相关蛋白肌醇1,4,5-三磷酸受体1(ITPR1)、电压依赖性阴离子通道1(VDAC1)、葡萄糖调节蛋白75(GRP75)表达及磷酸化水平,采用免疫共沉淀分析GSK3β与MAM相关蛋白的相互作用。  结果  与Young组比较,Old组细胞凋亡水平、线粒体活性氧水平及线粒体钙离子水平均较高;与Old组相比,Old+Ad-shNC+H/R组细胞凋亡水平、线粒体活性氧水平及线粒体钙离子水平均较高;与Old+Ad-shNC+H/R组比较,Old+Ad-shGSK3β+H/R组细胞凋亡水平、线粒体活性氧水平及线粒体钙离子水平均较低,差异均有统计学意义(均为P<0.05)。与Young组比较,Old组ITPR1、GRP75和GSK3β总蛋白表达增多,ITPR1和GRP75磷酸化水平升高,而VDAC1总蛋白和磷酸化蛋白水平均下降;与Old组比较,Old+Ad-shNC+H/R组GSK3β蛋白表达不变,ITPR1和GRP75总蛋白和磷酸化水平升高,VDAC1总蛋白表达不变,磷酸化水平增高;与Old+Ad-shNC+H/R组比较,Old+Ad-shGSK3β+H/R组GSK3β蛋白表达减少,ITPR1、GRP75和VDAC1总蛋白表达不变,磷酸化水平均下降。免疫共沉淀结果显示,GSK3β能够与ITPR1、GRP75和VDAC1蛋白发生相互作用。  结论  GSK3β在衰老RTEC中表达升高,抑制GSK3β表达能够降低ITPR1-GRP75-VDAC1复合体磷酸化水平,限制线粒体钙离子超负荷,保护线粒体功能,减少再灌注时细胞损伤。

     

  • 图  1  小鼠RTEC形态学特征(×100)

    Figure  1.  Morphological characteristics of RTEC of mice

    图  2  衰老细胞鉴定

    注:A图为SA-β-gal染色(×100);B图为蛋白质印迹法。

    Figure  2.  Identification of senescent cell

    图  3  各组细胞凋亡水平

    注:A图为流式细胞术检测各组细胞凋亡水平;B图为各组细胞凋亡率分析。与Young组比较,aP<0.05;与Old组比较,bP<0.05;与Old+Ad-shNC+H/R组比较,cP<0.05。

    Figure  3.  Apoptosis levels in each group

    图  4  各组线粒体活性氧水平

    注:A图为流式细胞术分析线粒体活性氧水平;B图为各组线粒体活性氧水平分析。与Young组比较,aP<0.05,与Old组比较,bP<0.05,与Old+Ad-shNC+H/R组比较,cP<0.05。

    Figure  4.  Mitochondrial reactive oxygen species levels in each group

    图  5  各组线粒体钙离子水平(免疫荧光,×600)

    Figure  5.  Mitochondrial calcium levels in each group

    图  6  各组GSK3β和MAM相关蛋白表达水平

    Figure  6.  The expression levels of GSK3β and MAM-associated proteins in each group

    图  7  GSK3β与MAM相关蛋白免疫共沉淀

    Figure  7.  Co-immunoprecipitation of GSK3β and MAM-associated proteins

  • [1] YU S, LONG JJ, YU Y, et al. Survival benefit of accepting kidneys from older donation after cardiac death donors[J]. Am J Transplant, 2021, 21(3): 1138-1146. DOI: 10.1111/ajt.16198.
    [2] 邬莉萍, 张曙伟. 老年活体供肾移植现状与研究进展[J]. 现代实用医学, 2022, 34(11): 1403-1405. DOI: 10.3969/j.issn.1671-0800.2022.11.002.

    WU LP, ZHANG SG. Current status and research progress of elderly living donor kidney transplantation[J]. Mod Pract Med, 2022, 34(11): 1403-1405. DOI: 10.3969/j.issn.1671-0800.2022.11.002.
    [3] 潘佳善, 苏涌, 朱道方, 等. 公民逝世捐献与活体捐献肾移植的近期临床效果[J]. 实用医学杂志, 2022, 38(2): 184-189. DOI: 10.3969/j.issn.1006-5725.2022.02.011.

    PAN JS, SU Y, ZHU DF, et al. Clinical effects of deceased vs living donor on kidney transplantation[J]. J Pract Med, 2022, 38(2): 184-189. DOI: 10.3969/j.issn.1006-5725.2022.02.011.
    [4] SUMMERS DM, WATSON CJ, PETTIGREW GJ, et al. Kidney donation after circulatory death (DCD): state of the art[J]. Kidney Int, 2015, 88(2): 241-249. DOI: 10.1038/ki.2015.88.
    [5] PÉREZ-SÁEZ MJ, MONTERO N, REDONDO-PACHÓN D, et al. Strategies for an expanded use of kidneys from elderly donors[J]. Transplantation, 2017, 101(4): 727-745. DOI: 10.1097/TP.0000000000001635.
    [6] PRUETT TL, VECE GR, CARRICO RJ, et al. US deceased kidney transplantation: estimated GFR, donor age and KDPI association with graft survival[J]. EClinicalMedicine, 2021, 37: 100980. DOI: 10.1016/j.eclinm.2021.100980.
    [7] REX N, MELK A, SCHMITT R. Cellular senescence and kidney aging[J]. Clin Sci (Lond), 2023, 137(24): 1805-1821. DOI: 10.1042/CS20230140.
    [8] DONATE-CORREA J, MARTÍN-CARRO B, CANNATA-ANDÍA JB, et al. Klotho, oxidative stress, and mitochondrial damage in kidney disease[J]. Antioxidants (Basel), 2023, 12(2): 239. DOI: 10.3390/antiox12020239.
    [9] CHAUDHARY MR, CHAUDHARY S, SHARMA Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662. DOI: 10.1007/s10522-023-10050-1.
    [10] DENG LC, ALINEJAD T, BELLUSCI S, et al. Fibroblast growth factors in the management of acute kidney injury following ischemia-reperfusion[J]. Front Pharmacol, 2020, 11: 426. DOI: 10.3389/fphar.2020.00426.
    [11] TANG C, DONG Z. Mitochondria in kidney injury: when the power plant fails[J]. J Am Soc Nephrol, 2016, 27(7): 1869-1872. DOI: 10.1681/ASN.2015111277.
    [12] FUJII S, USHIODA R, NAGATA K. Redox states in the endoplasmic reticulum directly regulate the activity of calcium channel, inositol 1, 4, 5-trisphosphate receptors[J]. Proc Natl Acad Sci U S A, 2023, 120(22): e2216857120. DOI: 10.1073/pnas.2216857120.
    [13] YUAN M, GONG M, HE J, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol, 2022, 52: 102289. DOI: 10.1016/j.redox.2022.102289.
    [14] ZIEGLER DV, VINDRIEUX D, GOEHRIG D, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging[J]. Nat Commun, 2021, 12(1): 720. DOI: 10.1038/s41467-021-20993-z.
    [15] MORCIANO G, GIORGI C, BONORA M, et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 142-153. DOI: 10.1016/j.yjmcc.2014.08.015.
    [16] FANG Y, CHEN B, LIU Z, et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging[J]. J Clin Invest, 2022, 132(4): e141848. DOI: 10.1172/JCI141848.
    [17] KUANG BC, WANG ZH, HOU SH, et al. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis[J]. Acta Pharmacol Sin, 2023, 44(2): 367-380. DOI: 10.1038/s41401-022-00942-2.
    [18] COELLO I, MARTÍNEZ AI, PERAIRE M, et al. Effect of ischemia times and donor and recipient features on Maastricht category III kidney transplant outcomes[J]. Arch Esp Urol, 2022, 75(7): 612-617. DOI: 10.56434/j.arch.esp.urol.20227507.88.
    [19] LIM WH, OOI E, PILMORE HL, et al. Interactions between donor age and 12-month estimated glomerular filtration rate on allograft and patient outcomes after kidney transplantation[J]. Transpl Int, 2022, 35: 10199. DOI: 10.3389/ti.2022.10199.
    [20] SCHMITT R, MELK A. Molecular mechanisms of renal aging[J]. Kidney Int, 2017, 92(3): 569-579. DOI: 10.1016/j.kint.2017.02.036.
    [21] MAROSI M, ARMAN P, ACETO G, et al. Glycogen synthase kinase 3: ion channels, plasticity, and diseases[J]. Int J Mol Sci, 2022, 23(8): 4413. DOI: 10.3390/ijms23084413.
    [22] 许艳玲, 赵玉珠, 付裕, 等. 青蒿琥酯通过PI3K/GSK-3β通路对1型糖尿病小鼠胰岛素抵抗的改善作用研究[J]. 天津中医药, 2022, 39(8): 1077-1081. DOI: 10.11656/j.issn.1672-1519.2022.08.23.

    XU YL, ZHAO YZ, FU Y, et al. Effect of artesunate on insulin resistance in type 1 diabetic mouse through PI3K/GSK-3β pathway[J]. Tianjin J Tradit Chin Med, 2022, 39(8): 1077-1081. DOI: 10.11656/j.issn.1672-1519.2022.08.23.
    [23] KREIDBERG JA, SCHUMACHER VA. GSK3β and the aging kidney[J]. J Clin Invest, 2022, 132(4): e155885. DOI: 10.1172/JCI155885.
    [24] 信强, 崔碧红, 苏秀兰, 等. 缺血再灌注对老年心脏的损伤机制及研究进展[J]. 内蒙古医科大学学报, 2023, 45(1): 101-105.

    XIN Q, CUI BH, SU XL, et al. Mechanism and research progress of ischemia-reperfusion injury in elderly heart[J]. J Inner Mongolia Med Univ, 2023, 45(1): 101-105.
    [25] CHEN Q, SONG Y, YANG N, et al. Aging deteriorated liver ischemia and reperfusion injury by suppressing Tribble's proteins 1 mediated macrophage polarization[J]. Bioengineered, 2022, 13(6): 14519-14533. DOI: 10.1080/21655979.2022.2090218.
    [26] KOSTYAK JC, HUNTER JC, KORZICK DH. Acute PKCdelta inhibition limits ischaemia-reperfusion injury in the aged rat heart: role of GSK-3beta[J]. Cardiovasc Res, 2006, 70(2): 325-334. DOI: 10.1016/j.cardiores.2006.02.009.
    [27] KORZICK DH, KOSTYAK JC, HUNTER JC, et al Local delivery of PKCepsilon-activating peptide mimics ischemic preconditioning in aged hearts through GSK-3beta but not F1-ATPase inactivation[J]. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2056-H2063. DOI: 10.1152/ajpheart.00403.2007.
    [28] NELSON PJ, CANTLEY L. GSK3beta plays dirty in acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(2): 199-200. DOI: 10.1681/ASN.2009121214.
    [29] ZHOU S, WANG P, QIAO Y, et al. Genetic and pharmacologic targeting of glycogen synthase kinase 3β reinforces the Nrf2 antioxidant defense against podocytopathy[J]. J Am Soc Nephrol, 2016, 27(8): 2289-2308. DOI: 10.1681/ASN.2015050565.
    [30] SUN Y, FAN Y, WANG Z, et al. S100A16 promotes acute kidney injury by activating HRD1-induced ubiquitination and degradation of GSK3β and CK1α[J]. Cell Mol Life Sci, 2022, 79(3): 184. DOI: 10.1007/s00018-022-04213-5.
    [31] GUO J, ZHENG W, LIU Y, et al. Long non-coding RNA DLX6-AS1 is the key mediator of glomerular podocyte injury and albuminuria in diabetic nephropathy by targeting the miR-346/GSK-3β signaling pathway[J]. Cell Death Dis, 2023, 14(2): 172. DOI: 10.1038/s41419-023-05695-2.
    [32] CHEN B, WANG P, LIANG X, et al. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease[J]. Cell Death Dis, 2021, 12(5): 432. DOI: 10.1038/s41419-021-03709-5.
    [33] ZENG L, NG JK, FUNG WW, et al. Intrarenal and urinary glycogen synthase kinase-3 beta levels in diabetic and nondiabetic chronic kidney disease[J]. Kidney Blood Press Res, 2023, 48(1): 241-248. DOI: 10.1159/000530210.
    [34] JANIKIEWICZ J, SZYMAŃSKI J, MALINSKA D, et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics[J]. Cell Death Dis, 2018, 9(3): 332. DOI: 10.1038/s41419-017-0105-5.
    [35] FUJIMOTO T, SHIRASAWA S. Identification of KRAP-expressing cells and the functional relevance of KRAP to the subcellular localization of IP3R in the stomach and kidney[J]. Int J Mol Med, 2012, 30(6): 1287-1293. DOI: 10.3892/ijmm.2012.1126.
    [36] LIU Y, MA X, FUJIOKA H, et al. DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-GRP75-VDAC1[J]. Proc Natl Acad Sci U S A, 2019, 116(50): 25322-25328. DOI: 10.1073/pnas.1906565116.
    [37] GOMEZ L, THIEBAUT PA, PAILLARD M, et al. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury[J]. Cell Death Differ, 2016, 23(2): 313-322. DOI: 10.1038/cdd.2015.101.
    [38] PASTORINO JG, HOEK JB, SHULGA N. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity[J]. Cancer Res, 2005, 65(22): 10545-10554. DOI: 10.1158/0008-5472.CAN-05-1925.
    [39] DAS S, WONG R, RAJAPAKSE N, et al. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation[J]. Circ Res, 2008, 103(9): 983-991. DOI: 10.1161/CIRCRESAHA.108.178970.
    [40] THOUDAM T, CHANDA D, LEE JY, et al. Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease[J]. Nat Commun, 2023, 14(1): 1703. DOI: 10.1038/s41467-023-37214-4.
  • 加载中
图(7)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  14
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 网络出版日期:  2024-03-25

目录

    /

    返回文章
    返回