留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青蒿琥酯通过NLRP3炎症小体抑制细胞焦亡减轻大鼠肾缺血-再灌注损伤

袁强 申开文 张瑞波 王强 吴玉婷 沈俊

袁强, 申开文, 张瑞波, 等. 青蒿琥酯通过NLRP3炎症小体抑制细胞焦亡减轻大鼠肾缺血-再灌注损伤[J]. 器官移植, 2021, 12(6): 733-740. doi: 10.3969/j.issn.1674-7445.2021.06.014
引用本文: 袁强, 申开文, 张瑞波, 等. 青蒿琥酯通过NLRP3炎症小体抑制细胞焦亡减轻大鼠肾缺血-再灌注损伤[J]. 器官移植, 2021, 12(6): 733-740. doi: 10.3969/j.issn.1674-7445.2021.06.014
Yuan Qiang, Shen Kaiwen, Zhang Ruibo, et al. Artesunate alleviates renal ischemia-reperfusion injury in rats by inhibiting pyroptosis via NLRP3 inflammasome[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 733-740. doi: 10.3969/j.issn.1674-7445.2021.06.014
Citation: Yuan Qiang, Shen Kaiwen, Zhang Ruibo, et al. Artesunate alleviates renal ischemia-reperfusion injury in rats by inhibiting pyroptosis via NLRP3 inflammasome[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 733-740. doi: 10.3969/j.issn.1674-7445.2021.06.014

青蒿琥酯通过NLRP3炎症小体抑制细胞焦亡减轻大鼠肾缺血-再灌注损伤

doi: 10.3969/j.issn.1674-7445.2021.06.014
基金项目: 

贵州省卫生健康委科学技术基金 gzwkj2021-220

贵州省科技计划项目 (2018)5779-6

国家自然科学基金培育项目(贵州医科大学附属医院) gyfynsfc(2020)-30

详细信息
    作者简介:

    袁强,男,1993年生,硕士研究生,研究方向为肾移植相关缺血-再灌注损伤与保护,Email: 411057131@qq.com

    通讯作者:

    沈俊,男,1973年生,博士,副主任医师,研究方向为肾移植相关缺血-再灌注损伤与保护,Email: shenjun@gmc.edu.cn

  • 中图分类号: R617

Artesunate alleviates renal ischemia-reperfusion injury in rats by inhibiting pyroptosis via NLRP3 inflammasome

More Information
  • 摘要:   目的  探究青蒿琥酯对大鼠肾缺血-再灌注损伤(IRI)的作用及机制。   方法  将25只SD大鼠随机分为假手术组(Sham组)、模型组(IRI组)、低剂量青蒿琥组(ART-L组)、高剂量青蒿琥酯组(ART-H组)和NLRP3炎症小体抑制剂组(INF39组),每组5只。分析各组大鼠血清肌酐(Scr)、血尿素氮(BUN)水平及肾组织病理损伤情况;检测各组大鼠血清肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6水平;用免疫组织化学染色法检测各组大鼠肾组织IL-1β的表达;免疫荧光染色和蛋白质免疫印迹法检测焦亡相关蛋白的表达。   结果  与Sham组比较,IRI组Scr和BUN水平升高,肾组织损伤较重,炎症因子TNF-α、IL-6、IL-1β表达水平升高,肾损伤分子(KIM)-1及焦亡相关蛋白NOD样受体蛋白3(NLRP3)、半胱氨酸天冬氨酸蛋白酶(Caspase)-1、Gasdermin D(GSDMD)、IL-1β蛋白表达水平均升高;与IRI组比较,ART-L组、ART-H组和INF39组Scr和BUN水平均下降,肾组织损伤均较轻,TNF-α、IL-6、IL-1β表达水平均降低,KIM-1、NLRP3、Caspase-1、GSDMD、IL-1β蛋白表达水平均下降。   结论  青蒿琥酯可抑制NLRP3炎症小体诱导的细胞焦亡,减少肾IRI后焦亡相关蛋白的表达及炎症因子的释放,减轻肾IRI。

     

  • 图  1  各组大鼠肾组织病理学表现

    注: A图为各组大鼠肾IRI后24 h肾组织病理学结果(HE,x400); B图为各组大鼠肾IRI后24 h肾组织病理学结果(PAS,x200)。

    Figure  1.  Renal histopathological features of rats in each group

    图  2  各组大鼠肾功能血清学指标

    注: A图为各组大鼠肾IRI后24hBUN水平; B图为各组大鼠肾IRI后24hScr水平; 与Sham组比较,aP<0.05;与IRI组比较,bP<0.05;与ART-L组比较,cP<0.05。

    Figure  2.  Serum indexes of renal function of rats in each group

    图  3  各组大鼠肾组织KIM-1蛋白表达水平

    注: 与Sham组比较,aP<0.05; 与IRI组比较,bP<0.05; 与ART-L组比较,cP<0.05; 与ART-H组比较,dp<0.05。

    Figure  3.  The expression levels of KIM-1 protein in renal tissues of rats in each group

    图  4  各组大鼠肾组织IL-1β的表达情况

    注: 图示各组大鼠肾IRI后24 h肾组织IL-β的表达(免疫组化,x 200)

    Figure  4.  Expression of IL-1 in renal tissues of rats in each group

    图  5  各组大鼠血清炎症因子的水平

    注: A图示各组大鼠肾IRI后24 h血清TNF-ax水平; B图示各组大鼠肾IRI后24 h血清IL-6水平; 与Sham组比较,aP<0.05; 与IRI组比较,bP<0.05; 与ART-L组比较,cP<0.05。

    Figure  5.  The levels of inflammatory factors in serum of rats in each group

    图  6  各组大鼠肾组织焦亡相关蛋白的表达情况

    注: A图为各组大鼠肾组织焦亡相关蛋白表达情况,与Sham组比较,aP<0.05, 与IRI组比较,bP<0.05,与ART-L组比较,cP<0.05;B图为各组大鼠肾IRI后24 h肾组织NLRP3. Caspase-1的表达情况(免疫荧光,x200); C图为各组大鼠肾IRI后24 h肾组织GSDMD的表达情况(免疫荧光,x200)。

    Figure  6.  Expression of pyroptosis related proteins in renal tissues of rats in each group

  • [1] ZHAO H, ALAM A, SOO AP, et al. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond[J]. EBioMedicine, 2018, 28: 31-42. DOI: 10.1016/j.ebiom.2018.01.025.
    [2] 袁强, 申开文, 张瑞波, 等. NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2021, 12(2): 177-183. DOI: 10.3969/j.issn.1674-7445.2021.02.007.

    YUAN Q, SHEN KW, ZHANG RB, et al. Role of NLRP3 inflammasome and related inflammatory signaling pathways in renal ischemia-reperfusion injury[J]. Organ Transplant, 2021, 12(2): 177-183. DOI: 10.3969/j.issn.1674-7445.2021.02.007.
    [3] BORTOLOTTI P, FAURE E, KIPNIS E. Inflammasomes in tissue damages and immune disorders after trauma[J]. Front Immunol, 2018, 9: 1900. DOI: 10.3389/fimmu.2018.01900.
    [4] WANG Z, ZHANG S, XIAO Y, et al. NLRP3 inflammasome and inflammatory diseases[J]. Oxid Med Cell Longev, 2020: 4063562. DOI: 10.1155/2020/4063562.
    [5] EFFERTH T, DUNSTAN H, SAUERBREY A, et al. The anti-malarial artesunate is also active against cancer[J]. Int J Oncol, 2001, 18(4): 767-773. DOI: 10.3892/ijo.18.4.767.
    [6] KAPTEIN SJ, EFFERTH T, LEIS M, et al. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo[J]. Antiviral Res, 2006, 69(2): 60-69. DOI: 10.1016/j.antiviral.2005.10.003.
    [7] VERMA S, KUMAR VL. Artesunate affords protection against aspirin-induced gastric injury by targeting oxidative stress and proinflammatory signaling[J]. Pharmacol Rep, 2018, 70(2): 390-397. DOI: 10.1016/j.pharep.2017.06.003.
    [8] FENG FB, QIU HY. Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/Akt/mTOR signaling pathway in rat models with rheumatoid arthritis[J]. Biomed Pharmacother, 2018, 102: 1209-1220. DOI: 10.1016/j.biopha.2018.03.142.
    [9] LIU Z, QU M, YU L, et al. Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome[J]. Inflammation, 2018, 41(4): 1546-1556. DOI: 10.1007/s10753-018-0801-z.
    [10] PELLEGRINI C, FORNAI M, COLUCCI R, et al. A comparative study on the efficacy of NLRP3 inflammasome signaling inhibitors in a pre-clinical model of bowel inflammation[J]. Front Pharmacol, 2018, 9: 1405. DOI: 10.3389/fphar.2018.01405.
    [11] 闫林轩, 梅霄阳, 章林明, 等. G蛋白偶联雌激素受体通过减轻大鼠肾小管上皮细胞凋亡保护肾脏缺血再灌注损伤[J]. 实用医学杂志, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.

    YAN LX, MEI XY, ZHANG LM, et al. GPER protects renal ischemia-reperfusion injury by reducing the apoptosis of renal tubular epithelial cells in rats[J]. J Pract Med, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.
    [12] RABB H, GRIFFIN MD, MCKAY DB, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps[J]. J Am Soc Nephrol, 2016, 27(2): 371-379. DOI: 10.1681/ASN.2015030261.
    [13] CHEN H, FANG Y, WU J, et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD[J]. Cell Death Dis, 2018, 9(9): 878. DOI: 10.1038/s41419-018-0936-8.
    [14] DING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610): 111-116. DOI: 10.1038/nature18590.
    [15] 田梦蕾, 马梦茜, 刘茂东. 细胞焦亡与肾脏疾病[J]. 中华生物医学工程杂志, 2021, 27(1): 94-97. DOI: 10.3760/cma.j.cn115668-20190604-00071.

    TIAN ML, MA MQ, LIU MD. The role of pyroptosis in renal diseases[J]. Chin J Biomed Eng, 2021, 27(1): 94-97. DOI: 10.3760/cma.j.cn115668-20190604-00071.
    [16] LU F, LAN Z, XIN Z, et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases[J]. J Cell Physiol, 2020, 235(4): 3207-3221. DOI: 10.1002/jcp.29268.
    [17] SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. DOI: 10.1038/nature15514.
    [18] ROGERS C, ALNEMRI ES. Gasdermins: novel mitochondrial pore-forming proteins[J]. Mol Cell Oncol, 2019, 6(5): e1621501. DOI: 10.1080/23723556.2019.1621501.
    [19] ANDERS HJ. Of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease[J]. J Am Soc Nephrol, 2016, 27(9): 2564-2575. DOI: 10.1681/ASN.2016020177.
    [20] ANDRADE-OLIVEIRA V, FORESTO-NETO O, WATANABE IKM, et al. Inflammation in renal diseases: new and old players[J]. Front Pharmacol, 2019, 10: 1192. DOI: 10.3389/fphar.2019.01192.
    [21] WEN Y, LIU YR, TANG TT, et al. mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI[J]. Int J Biochem Cell Biol, 2018, 98: 43-53. DOI: 10.1016/j.biocel.2018.02.015.
    [22] LIU JJ, LU L, HU FQ, et al. Methylene blue attenuates renal ischemia-reperfusion injury by negative regulation of NLRP3 signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(9): 2847-2853. DOI: 10.26355/eurrev_201805_14986.
    [23] HUTTON HL, OOI JD, HOLDSWORTH SR, et al. The NLRP3 inflammasome in kidney disease and autoimmunity[J]. Nephrology (Carlton), 2016, 21(9): 736-744. DOI: 10.1111/nep.12785.
    [24] FAN S, ZHANG D, LIU F, et al. Artesunate alleviates myocardial ischemia/reperfusion-induced myocardial necrosis in rats and hypoxia/reoxygenation-induced apoptosis in H9C2 cells via regulating the FAK/PI3K/Akt pathway[J]. Ann Transl Med, 2020, 8(20): 1291. DOI: 10.21037/atm-20-5182.
    [25] CHEN Y, WU J, ZHU J, et al. Artesunate provides neuroprotection against cerebral ischemia-reperfusion injury via the TLR-4/NF-κB pathway in rats[J]. Biol Pharm Bull, 2021, 44(3): 350-356. DOI: 10.1248/bpb.b20-00604.
    [26] ZHANG K, YANG Y, GE H, et al. Artesunate promotes the proliferation of neural stem/progenitor cells and alleviates ischemia-reperfusion injury through PI3K/Akt/Foxo-3a/p27kip1 signaling pathway[J]. Aging (Albany NY), 2020, 12(9): 8029-8048. DOI: 10.18632/aging.103121.
    [27] SUN Z, MA Y, CHEN F, et al. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway[J]. Chem Biol Interact, 2018, 293: 11-19. DOI: 10.1016/j.cbi.2018.07.011.
  • 加载中
图(7)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  77
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回