留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富半胱氨酸蛋白61对大鼠自体脂肪移植存活影响及其机制的实验研究

陈兆欢 段然 黄晓璐 李青峰

陈兆欢, 段然, 黄晓璐, 等. 富半胱氨酸蛋白61对大鼠自体脂肪移植存活影响及其机制的实验研究[J]. 器官移植, 2021, 12(4): 403-411. doi: 10.3969/j.issn.1674-7445.2021.04.006
引用本文: 陈兆欢, 段然, 黄晓璐, 等. 富半胱氨酸蛋白61对大鼠自体脂肪移植存活影响及其机制的实验研究[J]. 器官移植, 2021, 12(4): 403-411. doi: 10.3969/j.issn.1674-7445.2021.04.006
Chen Zhaohuan, Duan Ran, Huang Xiaolu, et al. Experimental study of effect and mechanism of cysteine rich protein 61 on survival of adipose tissues in rats after autologous fat grafting[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 403-411. doi: 10.3969/j.issn.1674-7445.2021.04.006
Citation: Chen Zhaohuan, Duan Ran, Huang Xiaolu, et al. Experimental study of effect and mechanism of cysteine rich protein 61 on survival of adipose tissues in rats after autologous fat grafting[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 403-411. doi: 10.3969/j.issn.1674-7445.2021.04.006

富半胱氨酸蛋白61对大鼠自体脂肪移植存活影响及其机制的实验研究

doi: 10.3969/j.issn.1674-7445.2021.04.006
基金项目: 

国家自然科学基金 81620108019

详细信息
    作者简介:

    陈兆欢,女,1995年生,硕士,研究方向为器官修复重建与再生,Email:chzhh2019@163.com

    通讯作者:

    黄晓璐,女,博士,研究方向为器官修复重建与再生,Email:xl_huang@alumni.sjtu.edu.cn

    李青峰,男,博士研究生导师,教授,研究方向为器官修复重建与再生,Email:dr.liqingfeng@yahoo.com

  • 中图分类号: R617, R62

Experimental study of effect and mechanism of cysteine rich protein 61 on survival of adipose tissues in rats after autologous fat grafting

More Information
  • 摘要:   目的  探索富半胱氨酸蛋白61即CCN家族成员1(CCN1)对自体脂肪移植术后脂肪组织存活的影响及其作用机制。  方法  建立大鼠自体脂肪移植模型1周后,随机分为CCN1组与对照组,每组各20只。比较两组大鼠移植脂肪存活情况; 比较两组大鼠移植脂肪组织形态、活性脂肪细胞比例及新生血管数量; 利用高通量测序技术比较两组大鼠移植脂肪组织差异表达信使核糖核酸(mRNA)并进行聚类分析; 比较两组大鼠移植脂肪组织促炎因子的表达水平。  结果  与对照组比较,CCN1组脂肪组织质量保留率较高,差异有统计学意义(P < 0.05),CCN1组脂肪细胞完整性更高,囊泡化与空泡化程度、炎症细胞聚集程度和纤维化程度更低,差异均有统计学意义(均为P < 0.000 1)。免疫荧光染色结果显示,CCN1组中活性脂肪细胞比例更高且形态均一,对照组存在较少的活性脂肪细胞且大小不一,伴有囊泡化现象。与对照组比较,CCN1组新生血管数量更多,血小板衍生生长因子(PDGF)和成纤维细胞生长因子(FGF)mRNA表达水平均升高,差异均有统计学意义(均为P < 0.05)。高通量测序结果显示两组的转录组水平差异有统计学意义,CCN1组中与M1型巨噬细胞相关的细胞表面标志物、炎症因子及趋化因子基因表达呈下调趋势,实时荧光定量聚合酶链反应(RT-qPCR)结果显示CCN1组白细胞介素(IL)-8、IL-1和Toll样受体(TLR)2 mRNA表达水平较对照组均降低,差异均有统计学意义(P < 0.01~0.05)。  结论  在自体脂肪移植过程中添加外源性CCN1能有效促进脂肪组织新生血管化,提高移植脂肪存活率,其机制可能是通过下调TLR2表达介导巨噬细胞向M2型转化。

     

  • 图  1  两组大鼠自体移植脂肪存活情况比较

    注:A图为自体脂肪移植术后3个月,移植脂肪组织大体观察; B图为两组大鼠移植脂肪组织质量保留率比较。

    Figure  1.  Comparison of the survival of autologous fat grafts of rats between two groups

    图  2  两组大鼠自体移植脂肪组织形态比较

    注:A图示HE染色结果,CCN1组可见更多完整脂肪细胞,而对照组可见更多囊泡结构(黑色星号),较多炎症细胞聚集(黑色箭头),同时纤维化(黑色三角)程度更高; B图对HE染色结果进行半定量分析,与对照组比较,aP < 0.000 1。

    Figure  2.  Comparison of morphology of autologous fat graft tissues of rats between two groups

    图  3  两组大鼠自体移植脂肪组织中活性脂肪细胞比例比较

    注:A图示脂肪移植术后3个月移植脂肪组织免疫荧光染色(×200)结果,CCN1组可见更多大小均一、结构完整的活性脂肪细胞,对照组存在较少的活性脂肪细胞且大小不一,伴有囊泡化现象; B图为perilipin染色区域的定量分析结果,与对照组比较,aP < 0.01。

    Figure  3.  Comparison of active adipocytes proportion in autologous fat graft tissues of rats between two groups

    图  4  两组大鼠自体移植脂肪组织新生血管数量比较

    注:A图示脂肪移植术后3个月移植脂肪组织新生血管内皮细胞免疫荧光染色(×800)结果,可见CD31阳性内皮细胞(箭头所示); B图为CD31染色区域的定量分析结果; C图为RT-qPCR检测两组PDGF、VEGF、FGF mRNA表达水平; 与对照组比较,aP < 0.05。

    Figure  4.  Comparison of neovascular number of autologous fat graft tissues of rats between two groups

    图  5  两组大鼠自体移植脂肪组织促炎因子mRNA表达水平比较

    注:与对照组比较,aP < 0.05,bP < 0.01。

    Figure  5.  Comparison of the mRNA expression levels of proinflammatory cytokines of autologous fat graft tissuesof rats between two groups

    表  1  高通量测序分析两组mRNA表达水平差异

    Table  1.   High-throughput sequencing analysis of differenceof mRNA expression levels between two groups

    M1型巨噬细胞相关基因 log2(差异倍数) 表达量改变
    细胞表面标志物
      SOCS3 -1.963 36 下调
      TLR2 -1.364 11 下调
      TLR7 -1.486 99 下调
      TLR9 -1.599 46 下调
      IL-18RAP -1.669 3 下调
    炎症因子和趋化因子
      IL-1β -4.319 61 下调
      TNF-αIP3 -1.654 89 下调
      IL-23α -1.700 33 下调
      IL-6 -2.539 59 下调
      IL-18 -1.477 76 下调
      CCL3 -4.207 43 下调
      CCL4 -1.771 42 下调
      CXCL1 -3.184 19 下调
      CXCL2 -6.822 16 下调
      CXCL6 -3.915 91 下调
    下载: 导出CSV
  • [1] 孔艳, 李玉泉, 杨向群. 脂肪来源干细胞治疗心肌梗死的现状及策略[J/CD]. 中华细胞与干细胞杂志(电子版), 2019, 9(1): 40-43. DOI: 10.3877/cma.j.issn.2095-1221.2019.01.008.

    KONG Y, LI YQ, YANG XQ. Current situation and strategies in the treatment of myocardial infarction by adipose-derived stem cells[J/CD]. Chin J Cell Stem Cell (Electr Edit), 2019, 9(1): 40-43. DOI: 10.3877/cma.j.issn.2095-1221.2019.01.008.
    [2] LALOZE J, FIÉVET L, DESMOULIÈRE A. Adipose-derived mesenchymal stromal cells in regenerative medicine: state of play, current clinical trials, and future prospects[J]. Adv Wound Care (New Rochelle), 2021, 10(1): 24-48. DOI: 10.1089/wound.2020.1175.
    [3] JUHL AA, REDSTED S, ENGBERG DAMSGAARD T. Autologous fat grafting after breast conserving surgery: breast imaging changes and patient-reported outcome[J]. J Plast Reconstr Aesthet Surg, 2018, 71(11): 1570-1576. DOI: 10.1016/j.bjps.2018.08.012.
    [4] KARMALI RJ, HANSON SE, NGUYEN AT, et al. Outcomes following autologous fat grafting for oncologic head and neck reconstruction[J]. Plast Reconstr Surg, 2018, 142(3): 771-780. DOI: 10.1097/PRS.0000000000004686.
    [5] GAL S, XUE Y, PU LLQ. What do we know now about autologous fat grafting?[J]. Ann Plast Surg, 2019, 83(4S Suppl 1): S17-S20. DOI: 10.1097/SAP.0000000000002097.
    [6] YI Y, HU W, ZHAO C, et al. Deciphering the emerging roles of adipocytes and adipose-derived stem cells in fat transplantation[J]. Cell Transplant, 2021, 30: 1-12. DOI:10. 1177/0963689721997799.
    [7] KØLLE SF, FISCHER-NIELSEN A, MATHIASEN AB, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial[J]. Lancet, 2013, 382(9898): 1113-1120. DOI: 10.1016/S0140- 6736(13)61410-5.
    [8] HU F, LIN Y, ZUO Y, et al. CCN1 induces adipogenic differentiation of fibro/adipogenic progenitors in a chronic kidney disease model[J]. Biochem Biophys Res Commun, 2019, 520(2): 385-391. DOI: 10.1016/j.bbrc.2019.10.047.
    [9] LIU H, PENG F, LIU Z, et al. Cyr61/CCN1 stimulates proliferation and differentiation of osteoblasts in vitro and contributes to bone remodeling in vivo in myeloma bone disease[J]. Int J Oncol, 2017, 50(2): 631-639. DOI: 10.3892/ijo.2016.3815.
    [10] CHEN W, XIA P, WANG H, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis[J]. J Cell Commun Signal, 2019, 13(3): 291-301. DOI: 10.1007/s12079-019-00511-z.
    [11] CHEN CY, SU CM, HSU CJ, et al. CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis[J]. J Bone Miner Res, 2017, 32(1): 34-45. DOI: 10.1002/jbmr.2926.
    [12] GROTE K, SALGUERO G, BALLMAIER M, et al. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration[J]. Blood, 2007, 110(3): 877-885. DOI: 10.1182/blood-2006- 07-036202.
    [13] ZHOU Y, LI H, LIANG X, et al. The CCN1 (Cyr61) protein promotes skin growth by enhancing epithelial-mesenchymal transition during skin expansion[J]. J Cell Mol Med, 2020, 24(2): 1460-1473. DOI: 10.1111/jcmm.14828.
    [14] KIM KH, WON JH, CHENG N, et al. The matricellular protein CCN1 in tissue injury repair[J]. J Cell Commun Signal, 2018, 12(1): 273-279. DOI: 10.1007/s12079-018-0450-x.
    [15] AMIR-MOAZAMI O, EMRE Y. Matricellular protein CCN1/Cyr61 boosts T-cell output[J]. Med Sci (Paris), 2016, 32(2): 144-146. DOI: 10.1051/medsci/20163202003.
    [16] FAN Y, YANG X, ZHAO J, et al. Cysteine-rich 61 (Cyr61): a biomarker reflecting disease activity in rheumatoid arthritis[J]. Arthritis Res Ther, 2019, 21(1): 123. DOI: 10.1186/s13075-019-1906-y.
    [17] JUN JI, LAU LF. CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling[J]. Nat Commun, 2020, 11(1): 1242. DOI: 10.1038/s41467-020-15075-5.
    [18] LEU SJ, LIU Y, CHEN N, et al. Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic inducer CCN1 (Cyr61)[J]. J Biol Chem, 2003, 278(36): 33801-33808. DOI: 10.1074/jbc.M305862200.
    [19] LAU LF. Cell surface receptors for CCN proteins[J]. J Cell Commun Signal, 2016, 10(2): 121-127. DOI: 10.1007/s12079-016-0324-z.
    [20] GUILLON-MUNOS A, OIKONOMOPOULOU K, MICHEL N, et al. Kallikrein-related peptidase 12 hydrolyzes matricellular proteins of the CCN family and modifies interactions of CCN1 and CCN5 with growth factors[J]. J Biol Chem, 2011, 286(29): 25505-25518. DOI: 10.1074/jbc.M110.213231.
    [21] DU H, ZHOU Y, SUO Y, et al. CCN1 acceleratesre-epithelialization by promoting keratinocyte migration and proliferation during cutaneous wound healing[J]. Biochem Biophys Res Commun, 2018, 505(4): 966-972. DOI: 10.1016/j.bbrc.2018.09.001.
    [22] LIU K, CAI J, LI H, et al. The disturbed function of neutrophils at the early stage of fat grafting impairs long-term fat graft retention[J]. Plast Reconstr Surg, 2018, 142(5): 1229-1238. DOI: 10.1097/PRS.0000000000004882.
    [23] ZHAO J, YI C, LI L, et al. Observations on the survival and neovascularization of fat grafts interchanged between C57BL/6-gfp and C57BL/6 mice[J]. Plast Reconstr Surg, 2012, 130(3): 398e-406e. DOI: 10.1097/PRS.0b013e31825dbfd3.
    [24] TENG X, LIAO J, ZHAO L, et al. Whole transcriptome analysis of the differential RNA profiles and associated competing endogenous RNA networks in LPS-induced acute lung injury (ALI)[J]. PLoS One, 2021, 16(5): e0251359. DOI: 10.1371/journal.pone.0251359.
    [25] WANG S, GUSENOFF JA, RUBIN JP, et al. Molecular mechanisms of adipose tissue survival during severe hypoxia: implications for autologous fat graft performance[J]. Plast Reconstr Surg Glob Open, 2019, 7(6): e2275. DOI: 10.1097/GOX.0000000000002275.
    [26] ZIELINS ER, BRETT EA, BLACKSHEAR CP, et al. Purified adipose-derived stromal cells provide superior fat graft retention compared with unenriched stromal vascular fraction[J]. Plast Reconstr Surg, 2017, 139(4): 911-914. DOI: 10.1097/PRS.0000000000003165.
    [27] MOUSTAKI M, PAPADOPOULOS O, VERIKOKOS C, et al. Application of adipose-derived stromal cells in fat grafting: basic science and literature review[J]. Exp Ther Med, 2017, 14(3): 2415-2423. DOI: 10.3892/etm.2017.4811.
    [28] DONG Z, PENG Z, CHANG Q, et al. The angiogenic and adipogenic modes of adipose tissue after free fat grafting[J]. Plast Reconstr Surg, 2015, 135(3): 556e-567e. DOI: 10.1097/PRS.0000000000000965.
    [29] TOYSERKANI NM, QUAADE ML, SØRENSEN JA. Cell-assisted lipotransfer: a systematic review of its efficacy[J]. Aesthetic Plast Surg, 2016, 40(2): 309-318. DOI: 10.1007/s00266-016-0613-1.
    [30] LI M, CHEN C. The efficacy of cell-assisted lipotransfer versus conventional lipotransfer in breast augmentation: a systematic review and Meta-analysis[J]. Aesthetic Plast Surg, 2021, DOI: 10.1007/s00266-020-02123-0[Epub ahead of print].
    [31] YU F, WITMAN N, YAN D, et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model[J]. Stem Cell Res Ther, 2020, 11(1): 490. DOI: 10.1186/s13287-020-02008-8.
    [32] ALTMAN AM, YAN Y, MATTHIAS N, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model[J]. Stem Cells, 2009, 27(1): 250-258. DOI: 10.1634/stemcells.2008-0178.
    [33] DANILUCCI TM, SANTOS PK, PACHANE BC, et al. Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells[J]. Cell Commun Signal, 2019, 17(1): 27. DOI: 10.1186/s12964-019-0339-1.
    [34] ZHAO X, GUO J, ZHANG F, et al. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot[J]. Stem Cell Res Ther, 2020, 11(1): 394. DOI: 10.1186/s13287-020-01825-1.
    [35] BELTRÁN-CAMACHO L, ROJAS-TORRES M, DURÁN-RUIZ MC. Current status of angiogenic cell therapy and related strategies applied in critical limb ischemia[J]. Int J Mol Sci, 2021, 22(5): 2335. DOI: 10.3390/ijms22052335.
    [36] KIM J, DURAI P, JEON D, et al. Phloretin as a potent natural TLR2/1 inhibitor suppresses TLR2-induced inflammation[J]. Nutrients, 2018, 10(7): 868. DOI: 10.3390/nu10070868.
    [37] RAMASWAMY AK, VORP DA, WEINBAUM JS. Functional vascular tissue engineering inspired by matricellular proteins[J]. Front Cardiovasc Med, 2019, 6: 74. DOI: 10.3389/fcvm.2019.00074.
    [38] DI Y, ZHANG Y, NIE Q, et al. CCN1/Cyr61-PI3K/Akt signaling promotes retinal neovascularization in oxygen-induced retinopathy[J]. Int J Mol Med, 2015, 36(6): 1507-1518. DOI: 10.3892/ijmm.2015.2371.
    [39] MATSUMAE H, YOSHIDA Y, ONO K, et al. CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model[J]. Arterioscler Thromb Vasc Biol, 2008, 28(6): 1077-1083. DOI: 10.1161/ATVBAHA.108.162362.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  983
  • HTML全文浏览量:  200
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回