留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用

袁强 申开文 张瑞波 沈俊

袁强, 申开文, 张瑞波, 等. NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2021, 12(2): 177-183. doi: 10.3969/j.issn.1674-7445.2021.02.007
引用本文: 袁强, 申开文, 张瑞波, 等. NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2021, 12(2): 177-183. doi: 10.3969/j.issn.1674-7445.2021.02.007
Yuan Qiang, Shen Kaiwen, Zhang Ruibo, et al. Role of NLRP3 inflammasome and related inflammatory signaling pathways in renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 177-183. doi: 10.3969/j.issn.1674-7445.2021.02.007
Citation: Yuan Qiang, Shen Kaiwen, Zhang Ruibo, et al. Role of NLRP3 inflammasome and related inflammatory signaling pathways in renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 177-183. doi: 10.3969/j.issn.1674-7445.2021.02.007

NLRP3炎症小体与相关炎症信号通路在肾缺血-再灌注损伤中的作用

doi: 10.3969/j.issn.1674-7445.2021.02.007
基金项目: 

贵州省科技计划项目 (2018)5779-6

2020年国家自然科学基金培育项目(贵州医科大学附属医院) gyfynsfc(2020)-30

贵阳市政府-贵州医科大学联合基金 GY2017-16

详细信息
    作者简介:

    袁强,男,1993年生,硕士研究生,研究方向为肾移植相关缺血-再灌注损伤与保护,Email: 411057131@qq.com

    通讯作者:

    沈俊,男,1973年生,博士,副主任医师,研究方向为肾移植相关缺血-再灌注损伤与保护,Email: shenjun@gmc.edu.cn

  • 中图分类号: R617

Role of NLRP3 inflammasome and related inflammatory signaling pathways in renal ischemia-reperfusion injury

More Information
  • 摘要: 肾缺血-再灌注损伤(IRI)常见于肾移植术中,是引起急性肾衰竭的重要病理生理过程,严重影响受者预后。炎症反应在IRI的发病机制及病理过程中占据着重要地位。活化的NOD样受体蛋白3(NLRP3)炎症小体可通过介导多种促炎因子的成熟与释放,调节机体炎症反应及相关细胞功能。本文对肾IRI中的NLRP3炎症小体及其相关炎症信号通路的作用机制进行了总结,旨在为临床肾IRI的防治提供新思路。
  • [1] NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [2] ELTZSCHIG HK, ECKLE T. Ischemia and reperfusion--from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. DOI: 10.1038/nm.2507.
    [3] JANSEN MP, EMAL D, TESKE GJ, et al. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps[J]. Kidney Int, 2017, 91(2): 352-364. DOI: 10.1016/j.kint.2016.08.006.
    [4] PARK JS, CHOI HI, BAE EH, et al. Small heterodimer partner attenuates hydrogen peroxide-induced expression of cyclooxygenase-2 and inducible nitric oxide synthase by suppression of activator protein-1 and nuclear factor-κB in renal proximal tubule epithelial cells[J]. Int J Mol Med, 2017, 39(3): 701-710. DOI: 10.3892/ijmm.2017.2883.
    [5] MULAY SR. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases[J]. Kidney Int, 2019, 96(1): 58-66. DOI: 10.1016/j.kint.2019.01.014.
    [6] SHIM DW, LEE KH. Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome[J]. Front Immunol, 2018, 9: 1054. DOI: 10.3389/fimmu.2018.01054.
    [7] BORTOLOTTI P, FAURE E, KIPNIS E. Inflammasomes in tissue damages and immune disorders after trauma[J]. Front Immunol, 2018, 9: 1900. DOI: 10.3389/fimmu.2018.01900.
    [8] WANG Z, ZHANG S, XIAO Y, et al. NLRP3 inflammasome and inflammatory diseases[J]. Oxid Med Cell Longev, 2020: 4063562. DOI: 10.1155/2020/4063562.
    [9] LAU A, CHUNG H, KOMADA T, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury[J]. J Clin Invest, 2018, 128(7): 2894-2913. DOI: 10.1172/JCI96640.
    [10] LIU H, WU X, LUO J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β[J]. Exp Neurol, 2020, 329: 113302. DOI: 10.1016/j.expneurol.2020.113302.
    [11] WANG Y, LIU X, SHI H, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases[J]. Clin Transl Med, 2020, 10(1): 91-106. DOI: 10.1002/ctm2.13.
    [12] ITO H, KIMURA H, KARASAWA T, et al. NLRP3 inflammasome activation in lung vascular endothelial cells contributes to intestinal ischemia/reperfusion-induced acute lung injury[J]. J Immunol, 2020, 205(5): 1393-1405. DOI: 10.4049/jimmunol.2000217.
    [13] GONG Y, CAO X, GONG L, et al. Sulforaphane alleviates retinal ganglion cell death and inflammation by suppressing NLRP3 inflammasome activation in a rat model of retinal ischemia/reperfusion injury[J]. Int J Immunopathol Pharmacol, 2019, 33. DOI: 10.1177/2058738419861777.
    [14] KELLEY N, JELTEMA D, DUAN Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328. DOI: 10.3390/ijms20133328.
    [15] STUTZ A, KOLBE CC, STAHL R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain[J]. J Exp Med, 2017, 214(6): 1725-1736. DOI: 10.1084/jem.20160933.
    [16] MEYERS AK, ZHU X. The NLRP3 inflammasome: metabolic regulation and contribution to inflammaging[J]. Cells, 2020, 9(8): 1808. DOI: 10.3390/cells9081808.
    [17] GAIDT MM, HORNUNG V. Alternative inflammasome activation enables IL-1β release from living cells[J]. Curr Opin Immunol, 2017, 44: 7-13. DOI: 10.1016/j.coi.2016.10.007.
    [18] KIM JK, JIN HS, SUH HW, et al. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling[J]. Immunol Cell Biol, 2017, 95(7): 584-592. DOI: 10.1038/icb.2017.23.
    [19] SWANSON KV, DENG M, TING JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. DOI: 10.1038/s41577-019-0165-0.
    [20] DI A, XIONG S, YE Z, et al. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation[J]. Immunity, 2018, 49(1): 56-65. DOI: 10.1016/j.immuni.2018.04.032.
    [21] TANG T, LANG X, XU C, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation[J]. Nat Commun, 2017, 8(1): 202. DOI: 10.1038/s41467-017-00227-x.
    [22] MORETTI J, BLANDER JM. Increasing complexity of NLRP3 inflammasome regulation[J]. J Leukoc Biol, 2020, DOI: 10.1002/JLB.3MR0520-104RR[Epubahead of print].
    [23] ZHONG Z, LIANG S, SANCHEZ-LOPEZ E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717): 198-203. DOI: 10.1038/s41586-018-0372-z.
    [24] CHEN KW, MONTELEONE M, BOUCHER D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar6676. DOI: 10.1126/sciimmunol.aar6676.
    [25] ANDRADE-OLIVEIRA V, FORESTO-NETO O, WATANABE IKM, et al. Inflammation in renal diseases: new and old players[J]. Front Pharmacol, 2019, 10: 1192. DOI: 10.3389/fphar.2019.01192.
    [26] GU L, TAO Y, CHEN C, et al. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation[J]. Int Urol Nephrol, 2018, 50(11): 2027-2035. DOI: 10.1007/s11255-018-1918-6.
    [27] FUSCO R, SIRACUSA R, GENOVESE T, et al. Focus on the role of NLRP3 inflammasome in diseases[J]. Int J Mol Sci, 2020, 21(12): 4223. DOI: 10.3390/ijms21124223.
    [28] WEN Y, LIU YR, TANG TT, et al. mROS-TXNIP axis activates NLRP3 inflammasome to mediate renal injury during ischemic AKI[J]. Int J Biochem Cell Biol, 2018, 98: 43-53. DOI: 10.1016/j.biocel.2018.02.015.
    [29] IYER SS, PULSKENS WP, SADLER JJ, et al. Necrotic cells trigger a sterile inflammatory response through the NLRP3 inflammasome[J]. Proc Natl Acad Sci U S A, 2009, 106(48): 20388-20393. DOI: 10.1073/pnas.0908698106.
    [30] KIM HJ, LEE DW, RAVICHANDRAN K, et al. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury[J]. J Pharmacol Exp Ther, 2013, 346(3): 465-472. DOI: 10.1124/jpet.113.205732.
    [31] KIM YG, KIM SM, KIM KP, et al. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney[J]. Cells, 2019, 8(11): 1389. DOI: 10.3390/cells8111389.
    [32] SCHNEIDER KS, GROß CJ, DREIER RF, et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of Caspase-1 protease activity[J]. Cell Rep, 2017, 21(13): 3846-3859. DOI: 10.1016/j.celrep.2017.12.018.
    [33] SCHMID-BURGK JL, GAIDT MM, SCHMIDT T, et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells[J]. Eur J Immunol, 2015, 45(10): 2911-2917. DOI: 10.1002/eji.201545523.
    [34] SHIGEOKA AA, MUELLER JL, KAMBO A, et al. An inflammasome-independent role for epithelial-expressed NLRP3 in renal ischemia-reperfusion injury[J]. J Immunol, 2010, 185(10): 6277-6285. DOI: 10.4049/jimmunol.1002330.
    [35] KIM SM, KIM YG, KIM DJ, et al. Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury[J]. Front Immunol, 2018, 9: 2563. DOI: 10.3389/fimmu.2018.02563.
    [36] LIAO Y, LIN X, LI J, et al. Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation[J]. Nephrology (Carlton), 2021, 26(1): 78-87. DOI: 10.1111/nep.13781.
    [37] YIN W, ZHOU QL, OUYANG SX, et al. Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K+ efflux[J]. BMC Nephrol, 2019, 20(1): 319. DOI: 10.1186/s12882-019-1506-8.
    [38] 朱晔, 朱伟平, 李巍, 等. 表氧化二十碳三烯酸对小鼠肾缺血再灌注损伤NLRP3炎症小体表达及细胞焦亡的影响[J]. 中华医学杂志, 2020, 100(10): 779-784. DOI: 10.3760/cma.j.cn112137-20190803-01731.

    ZHU Y, ZHU WP, LI W, et al. Implications of EET in renal ischemia/reperfusion by regulating NLRP3 expression and pyroptosis[J]. Natl Med J China, 2020, 100(10): 779-784. DOI: 10.3760/cma.j.cn112137-20190803-01731.
    [39] NAZIR S, GADI I, AL-DABET MM, et al. Cytoprotective activated protein C averts NLRP3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition[J]. Blood, 2017, 130(24): 2664-2677. DOI: 10.1182/blood-2017-05-782102.
    [40] HUANG G, BAO J, SHAO X, et al. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis[J]. Life Sci, 2020, 254: 117791. DOI: 10.1016/j.lfs.2020.117791.
    [41] HAN SJ, LOVASZI M, KIM M, et al. P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling[J]. FASEB J, 2020, 34(4): 5465-5482. DOI: 10.1096/fj.201903287R.
    [42] NEUDECKER V, HANEKLAUS M, JENSEN O, et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome[J]. J Exp Med, 2017, 214(6): 1737-1752. DOI: 10.1084/jem. 20160462.
    [43] WANG Y, HAN Z, FAN Y, et al. MicroRNA-9 inhibits NLRP3 inflammasome activation in human atherosclerosis inflammation cell models through the JAK1/STAT signaling pathway[J]. Cell Physiol Biochem, 2017, 41(4): 1555-1571. DOI: 10.1159/000470822.
    [44] CHEN S, SMITH BA, IYPE J, et al. MicroRNA-155-deficient dendritic cells cause less severe GVHD through reduced migration and defective inflammasome activation[J]. Blood, 2015, 126(1): 103-112. DOI: 10.1182/blood-2014-12-617258.
    [45] LECOEUR H, PRINA E, ROSAZZA T, et al. Targeting macrophage histone H3 modification as a leishmania strategy to dampen the NF-κB/NLRP3-mediated inflammatory response[J]. Cell Rep, 2020, 30(6): 1870-1882. DOI: 10.1016/j.celrep.2020.01.030.
  • 加载中
图(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-20
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回