留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年肾移植研究大盘点——来自中国的声音

罗子寰 孙启全

罗子寰, 孙启全. 2020年肾移植研究大盘点——来自中国的声音[J]. 器官移植, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006
引用本文: 罗子寰, 孙启全. 2020年肾移植研究大盘点——来自中国的声音[J]. 器官移植, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006
Luo Zihuan, Sun Qiquan. Research highlights of renal transplantation in 2020: voice from China[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006
Citation: Luo Zihuan, Sun Qiquan. Research highlights of renal transplantation in 2020: voice from China[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 169-176. doi: 10.3969/j.issn.1674-7445.2021.02.006

2020年肾移植研究大盘点——来自中国的声音

doi: 10.3969/j.issn.1674-7445.2021.02.006
基金项目: 

国家自然基金面上项目 81970650

国家自然基金面上项目 81770753

国家自然基金面上项目 81800663

国家自然基金面上项目 81800661

国家自然基金面上项目 81800662

国家重点研发计划项目 2018YFA0108804

详细信息
    作者简介:

    罗子寰,男,1988年生,博士,住院医师,研究方向为肾移植免疫,Email: luozhsysu@163.com

    通讯作者:

    孙启全,男,1973年生,博士,主任医师,研究方向为肾移植相关疾病,E-mail: sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617

Research highlights of renal transplantation in 2020: voice from China

More Information
  • 摘要: 肾移植是终末期肾病患者改善生存质量、回归正常生活的首选途径。随着医疗技术与免疫抑制剂的不断更新发展, 移植肾的短期存活时间显著延长, 但其长期存活问题仍亟待解决。肾缺血-再灌注损伤(IRI)、急性排斥反应、慢性移植肾失功、肾脏纤维化等因素仍是影响移植肾存活的几大难题, 相关研究一直是肾移植领域的热点。同时, 2020年是不平凡的一年, 新型冠状病毒肺炎(新冠肺炎)疫情对各行各业发展的影响巨大, 与肾移植相关的研究报道亦呈百家争鸣之态。本文就我国2020年肾移植相关的临床与基础研究的前沿热点以及肾移植领域新冠肺炎相关的研究做一综述, 以期提供新的治疗思路和策略。

     

  • [1] KALANTAR-ZADEH K, LI PK. Strategies to prevent kidney disease and its progression[J]. Nat Rev Nephrol, 2020, 16(3): 129-130. DOI: 10.1038/s41581-020-0253-1.
    [2] KALANTAR-ZADEH K, WIGHTMAN A, LIAO S. Ensuring choice for people with kidney failure-dialysis, supportive care, and hope[J]. N Engl J Med, 2020, 383(2): 99. DOI: 10.1056/NEJMp2001794.
    [3] CHEN N, HAO C, LIU BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis[J]. N Engl J Med, 2019, 381(11): 1011-1022. DOI: 10.1056/NEJMoa1901713.
    [4] LOUPY A, AUBERT O, ORANDI BJ, et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study[J]. BMJ, 2019, 366: l4923. DOI: 10.1136/bmj.l4923.
    [5] MAGEE CN, MURAKAMI N, BORGES TJ, et al. Notch-1 inhibition promotes immune regulation in transplantation via regulatory T cell-dependent mechanisms[J]. Circulation, 2019, 140(10): 846-863. DOI: 10.1161/CIRCULATIONAHA.119.040563.
    [6] EVREN E, RINGQVIST E, TRIPATHI KP, et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity[J]. Immunity, 2021, 54(2): 259-275. DOI: 10.1016/j.immuni.2021.12.003.
    [7] FERREIRA LMR, MULLER YD, BLUESTONE JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769. DOI: 10.1038/s41573-019-0041-4.
    [8] JORGENSEN AM, YOO JJ, ATALA A. Solid organ bioprinting: strategies to achieve organ function[J]. Chem Rev, 2020, 120(19): 11093-11127. DOI: 10.1021/acs.chemrev.0c00145.
    [9] STEWART BJ, FERDINAND JR, CLATWORTHY MR. Using single-cell technologies to map the human immune system-implications for nephrology[J]. Nat Rev Nephrol, 2020, 16(2): 112-128. DOI: 10.1038/s41581-019-0227-3.
    [10] LIU Y, HU J, LIU D, et al. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection[J]. Theranostics, 2020, 10(19): 8851-8862. DOI: 10.7150/thno.48201.
    [11] FERNANDEZ DM, GIANNARELLI C. Mapping transplant arteriosclerosis cell-by-cell: a path to new immune insights[J]. Circ Res, 2020, 127(8): 994-996. DOI: 10.1161/CIRCRESAHA.120.317907.
    [12] MASOUD AG, LIN J, AZAD AK, et al. Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury[J]. J Clin Invest, 2020, 130(1): 94-107. DOI: 10.1172/JCI128469.
    [13] CAI J, DENG J, GU W, et al. Impact of local alloimmunity and recipient cells in transplant arteriosclerosis[J]. Circ Res, 2020, 127(8): 974-993. DOI: 10.1161/CIRCRESAHA.119.316470.
    [14] WANG D, WANG J, BAI L, et al. Long-term expansion of pancreatic islet organoids from resident procr+ progenitors[J]. Cell, 2020, 180(6): 1198-1211. DOI: 10.1016/j.cell.2020.02.048.
    [15] CIPPÀ PE, LIU J, SUN B, et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation[J]. Nat Commun, 2019, 10(1): 1157. DOI: 10.1038/s41467-019-09092-2.
    [16] LIU L, FANG C, FU W, et al. Endothelial cell-derived interleukin-18 released during ischemia reperfusion injury selectively expands T peripheral helper cells to promote alloantibody production[J]. Circulation, 2020, 141(6): 464-478. DOI: 10.1161/CIRCULATIONAHA.119.042501.
    [17] LI X, LIAO J, SU X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics, 2020, 10(21): 9561-9578. DOI: 10.7150/thno.42153.
    [18] ZHOU C, ZHOU L, LIU J, et al. Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury[J]. Acta Biomater, 2020, 115: 250-263. DOI: 10.1016/j.actbio.2020.07.056.
    [19] ZHU J, ZHANG G, SONG Z, et al. Protein kinase C-δ mediates kidney tubular injury in cold storageassociated kidney transplantation[J]. J Am Soc Nephrol, 2020, 31(5): 1050-1065. DOI: 10.1681/ASN.2019101060.
    [20] NA N, ZHAO D, ZHANG J, et al. Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2020, 5(1): 194. DOI: 10.1038/s41392-020-00232-5.
    [21] XU Z, TSAI HI, XIAO Y, et al. Engineering programmed death ligand-1/cytotoxic T-lymphocyte-associated antigen-4 dual-targeting nanovesicles for immunosuppressive therapy in transplantation[J]. ACS Nano, 2020, 14(7): 7959-7969. DOI: 10.1021/acsnano.9b09065.
    [22] WANG Z, JIANG S, LI S, et al. Targeted galectin-7 inhibition with ultrasound microbubble targeted gene therapy as a sole therapy to prevent acute rejection following heart transplantation in a rodent model[J]. Biomaterials, 2020, 263: 120366. DOI: 10.1016/j.biomaterials.2020.120366.
    [23] YI L, CHEN Y, JIN Q, et al. Antagomir-155 attenuates acute cardiac rejection using ultrasound targeted microbubbles destruction[J]. Adv Healthc Mater, 2020, 9(14): e2000189. DOI: 10.1002/adhm.202000189.
    [24] LIAO T, LIU X, REN J, et al. Noninvasive and quantitative measurement of C4d deposition for the diagnosis of antibody-mediated cardiac allograft rejection[J]. EBioMedicine, 2018, 37: 236-245. DOI: 10.1016/j.ebiom.2018.10.061.
    [25] LIAO T, ZHANG Y, REN J, et al. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging[J]. Am J Transplant, 2019, 19(1): 259-268. DOI: 10.1111/ajt.15105.
    [26] LIAO T, LI Q, ZHANG Y, et al. Precise treatment of acute antibody-mediated cardiac allograft rejection in rats using C4d-targeted microbubbles loaded with nitric oxide[J]. J Heart Lung Transplant, 2020, 39(5): 481-490. DOI: 10.1016/j.healun.2020.02.002.
    [27] LUO Z, LIAO T, ZHANG Y, et al. Triptolide attenuates transplant vasculopathy through multiple pathways[J]. Front Immunol, 2020, 11: 612. DOI: 10.3389/fimmu.2020.00612.
    [28] RODRIGUEZ-RODRIGUEZ AE, DONATE-CORREA J, ROVIRA J, et al. Inhibition of the mTOR pathway: a new mechanism of β cell toxicity induced by tacrolimus[J]. Am J Transplant, 2019, 19(12): 3240-3249. DOI: 10.1111/ajt.15483.
    [29] TRIÑANES J, TEN DIJKE P, GROEN N, et al. Tacrolimus-induced BMP/SMAD signaling associates with metabolic stress-activated Foxo1 to trigger β-cell failure[J]. Diabetes, 2020, 69(2): 193-204. DOI: 10.2337/db19-0828.
    [30] LING Q, HUANG H, HAN Y, et al. The tacrolimusinduced glucose homeostasis imbalance in terms of the liver: from bench to bedside[J]. Am J Transplant, 2020, 20(3): 701-713. DOI: 10.1111/ajt.15665.
    [31] JIAO W, ZHANG Z, XU Y, et al. Butyric acid normalizes hyperglycemia caused by the tacrolimus-induced gut microbiota[J]. Am J Transplant, 2020, 20(9): 2413-2424. DOI: 10.1111/ajt.15880.
    [32] WANG XD, LIU JP, SONG TR, et al. Kidney transplantation from HBsAg+living donors to HBsAgrecipients: clinical outcomes at a high-volume center in China[J]. Clin Infect Dis, 2020: ciaa178. DOI: 10.1093/cid/ciaa178.
    [33] ZHU L, FU C, CHEN S, et al. Successful singlekidney transplantation in adult recipients using pediatric donors aged 8 to 36 months: comparable outcomes with those using pediatric donors aged >3 years[J]. Transplantation, 2019, 103(11): 2388-2396. DOI: 10.1097/TP.0000000000002618.
    [34] HE X, CHEN G, ZHU Z, et al. The first case of ischemiafree kidney transplantation in humans[J]. Front Med (Lausanne), 2019, 6: 276. DOI: 10.3389/fmed.2019.00276.
    [35] HURKMANS DP, VERHOEVEN JGHP, DE LEUR K, et al. Donor-derived cell-free DNA detects kidney transplant rejection during nivolumab treatment[J]. J Immunother Cancer, 2019, 7(1): 182. DOI: 10.1186/s40425-019-0653-6.
    [36] XIAO H, GAO F, PANG Q, et al. Diagnostic accuracy of donor-derived cell-free DNA in renal-allograft rejection: a Meta-analysis[J]. Transplantation, 2020, DOI: 10.1097/TP.0000000000003443 [Epub ahead of print].
    [37] CHEN XT, CHEN WF, LI J, et al. Urine donor-derived cell-free DNA helps discriminate BK polyomavirusassociated nephropathy in kidney transplant recipients with BK polyomavirus infection[J]. Front Immunol, 2020, 11: 1763. DOI: 10.3389/fimmu.2020.01763.
    [38] HAN F, WAN S, SUN Q, et al. Donor plasma mitochondrial DNA is correlated with posttransplant renal allograft function[J]. Transplantation, 2019, 103(11): 2347-2358. DOI: 10.1097/TP.0000000000002598.
    [39] ADAM BA, KIKIC Z, WAGNER S, et al. Intragraft gene expression in native kidney BK virus nephropathy versus T cell-mediated rejection: prospects for molecular diagnosis and risk prediction[J]. Am J Transplant, 2020, 20(12): 3486-3501. DOI: 10.1111/ajt.15980.
    [40] LIU Y, ZHOU S, HU J, et al. Characterization of aberrant pathways activation and immune microenviroment of BK virus associated nephropathy[J]. Aging (Albany NY), 2020, 12(14): 14434-14451. DOI: 10.18632/aging.103486.
    [41] HUANG Y, CHEN XT, YANG SC, et al. Detection of proximal tubule involvement by BK polyomavirus in kidney transplant recipients with urinary sediment doubleimmunostaining[J]. Front Immunol, 2020, 11: 582678. DOI: 10.3389/fimmu.2020.582678.
    [42] JIN Y, ZHOU Y, DENG W, et al. Genome-wide profiling of BK polyomavirus integration in bladder cancer of kidney transplant recipients reveals mechanisms of the integration at the nucleotide level[J]. Oncogene, 2021, 40(1): 46-54. DOI: 10.1038/s41388-020-01502-w.
    [43] WANG Y, LIU Y, DENG W, et al. Viral integration in BK polyomavirus-associated urothelial carcinoma in renal transplant recipients: multistage carcinogenesis revealed by next-generation virome capture sequencing[J]. Oncogene, 2020, 39(35): 5734-5742. DOI: 10.1038/s41388-020-01398-6.
    [44] LOUPY A, AUBERT O, REESE PP, et al. Organ procurement and transplantation during the COVID-19 pandemic[J]. Lancet, 2020, 395(10237): e95-e96. DOI: 10.1016/S0140-6736(20)31040-0.
    [45] 陈伟, 黄美近. 新型冠状病毒肺炎疫情下实施外科手术的思考和建议[J]. 中山大学学报(医学科学版), 2020, 41(2): 180-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202002003.htm

    CHEN W, HUANG MJ. Thoughts and advices on performing procedures in surgery during the outbreak of novel coronavirus pneumonia[J]. J Sun Yat-sen Univ (Med Sci), 2020, 41(2): 180-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202002003.htm
    [46] WANG J, LI X, CAO G, et al.COVID-19 in a kidney transplant patient[J].Eur Urol, 2020, 77(6): 769-770.DOI: 10.1016/j.eururo.2020.03.036.
    [47] ZHANG H, CHEN Y, YUAN Q, et al.Identification of kidney transplant recipients with coronavirus disease 2019[J].Eur Urol, 2020, 77(6): 742-747.DOI: 10.1016/j.eururo.2020.03.030.
    [48] ZHU L, GONG N, LIU B, et al.Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China[J].Eur Urol, 2020, 77(6): 748-754.DOI: 10.1016/j.eururo.2020.03.039.
    [49] WANG Y, YANG H, LIU H, et al.Strategies to halt 2019 novel coronavirus (SARS-CoV-2) spread for organ transplantation programs at the Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, China[J].Am J Transplant, 2020, 20(7): 1837-1839.DOI: 10.1111/ajt.15972.
    [50] XIA S, DUAN K, ZHANG Y, et al.Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials[J].JAMA, 2020, 324(10): 951-960.DOI: 10.1001/jama.2020.15543.
    [51] LAZARUS JV, RATZAN SC, PALAYEW A, et al.A global survey of potential acceptance of a COVID-19 vaccine[J].Nat Med, 2021, 27(2): 225-228.DOI: 10.1038/s41591-020-1124-9.
  • 加载中
计量
  • 文章访问数:  800
  • HTML全文浏览量:  478
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回