留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

公民逝世后器官捐献供肾损伤相关分子标志物的研究进展

韩飞 孙启全

韩飞, 孙启全. 公民逝世后器官捐献供肾损伤相关分子标志物的研究进展[J]. 器官移植, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018
引用本文: 韩飞, 孙启全. 公民逝世后器官捐献供肾损伤相关分子标志物的研究进展[J]. 器官移植, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018
Han Fei, Sun Qiquan. Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018
Citation: Han Fei, Sun Qiquan. Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death[J]. ORGAN TRANSPLANTATION, 2020, 11(4): 526-532. doi: 10.3969/j.issn.1674-7445.2020.04.018

公民逝世后器官捐献供肾损伤相关分子标志物的研究进展

doi: 10.3969/j.issn.1674-7445.2020.04.018
基金项目: 

国家自然科学基金 81970650

国家自然科学基金青年基金项目 81800661

详细信息
    作者简介:

    韩飞,男,1992年,博士,研究方向为供肾功能评估,Email: hanfei110033@163.com

    通讯作者:

    孙启全,男,1973年,博士,主任医师,研究方向为肾移植相关疾病,Email: sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617

Research progress on molecular markers related to the donor kidney injury from organ donation after citizen's death

More Information
  • 摘要: 供肾短缺是肾移植面临的一大难题,对供肾功能的准确评估可以降低器官的弃用率,以挽救更多的尿毒症患者。与病理学检查相比,循环中的分子标志物检测在临床应用中较为方便。本文就目前已发现的肾损伤标志物血清肌酐和血清胱抑素C(Cys-C)、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、肝型脂肪酸结合蛋白(L-FABP)、线粒体DNA(mtDNA)、肾损伤分子-1(KIM-1)和白细胞介素-18(IL-18)等方面的研究进展进行简要介绍。

     

  • [1] CHEN L, SU W, CHEN H, et al. Proteomics for biomarker identification and clinical application in kidney disease[J]. Adv Clin Chem, 2018, 85:91-113. DOI: 10.1016/bs.acc.2018.02.005.
    [2] MACIEL AT, NASSAR AP JR, VITORIO D. Very transient cases of acute kidney injury in the early postoperative period after cardiac surgery: the relevance of more frequent serum creatinine assessment and concomitant urinary biochemistry evaluation[J]. J Cardiothorac Vasc Anesth, 2016, 30(1):56-63. DOI:10. 1053/j.jvca.2015.04.020.
    [3] SHARDLOW A, MCINTYRE NJ, FRASER SDS, et al. The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: a primary care cohort study[J]. PLoS Med, 2017, 14(10):e1002400. DOI: 10.1371/journal.pmed.1002400.
    [4] KARKOUTI K, WIJEYSUNDERA DN, YAU TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors[J]. Circulation, 2009, 119(4):495-502. DOI: 10.1161/CIRCULATIONAHA.108.786913.
    [5] YANG SK, LIU J, ZHANG XM, et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: a Meta-analysis[J]. Ther Apher Dial, 2016, 20(6):579-587. DOI: 10.1111/1744-9987.12462.
    [6] LEZAIC V, DAJAK M, RADIVOJEVIC D, et al. Cystatin C and serum creatinine as predictors of kidney graft outcome[J]. Int Urol Nephrol, 2014, 46(7):1447-1454. DOI: 10.1007/s11255-013-0624-7.
    [7] PILCH NA, ROHAN V, RAO V, et al. Renal function variability: an independent risk factor for graft loss and death following kidney transplantation[J]. Am J Nephrol, 2018, 47(3):191-199. DOI: 10.1159/000487714.
    [8] TANGRI N, STEVENS LA, SCHMID CH, et al. Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate[J]. Kidney Int, 2011, 79(4):471-477. DOI: 10.1038/ki.2010.431.
    [9] FERGUSON TW, KOMENDA P, TANGRI N. Cystatin C as a biomarker for estimating glomerular filtration rate[J]. Curr Opin Nephrol Hypertens, 2015, 24(3):295-300. DOI: 10.1097/MNH.0000000000000115.
    [10] GOSMANOVA EO, LYUBAROVA R. Neutrophil gelatinase-associated lipocalin in acute heart failure: time to move on?[J]. Eur J Heart Fail, 2020, 22(2):264-266. DOI: 10.1002/ejhf.1684.
    [11] ZHANG W, YANG S, CUI L, et al. Neutrophil gelatinase-associated lipocalin worsens ischemia/reperfusion damageof kidney cells by autophagy[J]. Ren Fail, 2016, 38(7):1136-1140. DOI: 10.3109/0886022X.2016.1158041.
    [12] MA Q, DEVARAJAN SR, DEVARAJAN P. Amelioration of cisplatin-induced acute kidney injury by recombinant neutrophil gelatinase-associated lipocalin[J]. Ren Fail, 2016, 38(9):1476-1482. DOI:10.1080/0886022X.2016. 1227917.
    [13] HERBERT C, PATEL M, NUGENT A, et al. Serum cystatin C as an early marker of neutrophil gelatinase-associated lipocalin-positive acute kidney injury resulting from cardiopulmonary bypass in infants with congenital heart disease[J]. Congenit Heart Dis, 2015, 10(4):E180-E188. DOI: 10.1111/chd.12253.
    [14] GEORGE B, JOY MS, ALEKSUNES LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy[J]. Exp Biol Med (Maywood), 2018, 243(3):272-282. DOI: 10.1177/1535370217745302.
    [15] DEVARAJAN P. Neutrophil gelatinase-associated lipocalin--an emerging troponin for kidney injury[J]. Nephrol Dial Transplant, 2008, 23(12):3737-3743. DOI:10. 1093/ndt/gfn531.
    [16] CUI LY, ZHU X, YANG S, et al. Prognostic value of levels of urine neutrophil gelatinase-associated lipocalin and interleukin-18 in patients with delayed graft function after kidney transplantation[J]. Transplant Proc, 2015, 47(10):2846-2851. DOI:10.1016/j.transproceed.2015.10. 042.
    [17] MOLEDINA DG, HALL IE, THIESSEN-PHILBROOK H, et al. Performance of serum creatinine and kidney injury biomarkers for diagnosing histologic acute tubular injury[J]. Am J Kidney Dis, 2017, 70(6):807-816. DOI: 10.1053/j.ajkd.2017.06.031.
    [18] KOO TY, JEONG JC, LEE Y, et al. Pre-transplant evaluation of donor urinary biomarkers can predict reduced graft function after deceased donor kidney transplantation[J]. Medicine (Baltimore), 2016, 95(11): e3076. DOI: 10.1097/MD.0000000000003076.
    [19] MAIER HT, ASHRAF MI, DENECKE C, et al. Prediction of delayed graft function and long-term graft survival by serum and urinary neutrophil gelatinase-associated lipocalin during the early postoperative phase after kidney transplantation[J]. PLoS One, 2018, 13(1):e0189932. DOI: 10.1371/journal.pone.0189932.
    [20] HOLLMEN ME, KYLLÖNEN LE, MERENMIES J, et al. Serum neutrophil gelatinase-associated lipocalin and recovery of kidney graft function after transplantation[J]. BMC Nephrol, 2014, 15:123. DOI: 10.1186/1471-2369-15-123.
    [21] DONG L, MA Q, BENNETT M, et al. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass[J]. Pediatr Nephrol, 2017, 32(12):2351-2360. DOI: 10.1007/s00467-017-3748-7.
    [22] ASADA T, ISSHIKI R, HAYASE N, et al. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein[J]. Sci Rep, 2016, 6:33077. DOI: 10.1038/srep33077.
    [23] FERGUSON MA, VAIDYA VS, WAIKAR SS, et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury[J]. Kidney Int, 2010, 77(8):708-714. DOI: 10.1038/ki.2009.422.
    [24] MATSUI K, KAMIJO-IKEMORI A, SUGAYA T, et al. Usefulness of urinary biomarkers in early detection of acute kidney injury after cardiac surgery in adults[J]. Circ J, 2012, 76(1):213-220. DOI: 10.1253/circj.cj-11-0342.
    [25] REESE PP, HALL IE, WENG FL, et al. Associations between deceased-donor urine injury biomarkers and kidney transplant outcomes[J]. J Am Soc Nephrol, 2016, 27(5):1534-1543. DOI: 10.1681/ASN.2015040345.
    [26] PAJEK J, ŠKOBERNE A, ŠOSTERIČ K, et al. Non-inferiority of creatinine excretion rate to urinary L-FABP and NGAL as predictors of early renal allograft function[J]. BMC Nephrol, 2014, 15:117. DOI: 10.1186/1471-2369-15-117.
    [27] LI X, FANG P, LI Y, et al. Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation[J]. Arterioscler Thromb Vasc Biol, 2016, 36(6):1090-1100. DOI: 10.1161/ATVBAHA.115.306964.
    [28] SCHÖPF B, WEISSENSTEINER H, SCHÄFER G, et al. OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation[J]. Nat Commun, 2020, 11(1):1487. DOI: 10.1038/s41467-020-15237-5.
    [29] WENCESLAU CF, MCCARTHY CG, SZASZ T, et al. Mitochondrial damage-associated molecular patterns and vascular function[J]. Eur Heart J, 2014, 35(18):1172-1177. DOI: 10.1093/eurheartj/ehu047.
    [30] AHMED AI, SOLIMAN RA, SAMIR S. Cell free DNA and procalcitonin as early markers of complications in ICU patients with multiple trauma and major surgery[J]. Clin Lab, 2016, 62(12):2395-2404. DOI: 10.7754/Clin.Lab.2016.160615.
    [31] EIRIN A, SAAD A, TANG H, et al. Urinary mitochondrial DNA copy number identifies chronic renal injury in hypertensive patients[J]. Hypertension, 2016, 68(2):401-410. DOI: 10.1161/HYPERTENSIONAHA.116.07849.
    [32] WHITAKER RM, STALLONS LJ, KNEFF JE, et al. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury[J]. Kidney Int, 2015, 88(6):1336-1344. DOI: 10.1038/ki.2015.240.
    [33] HAN F, WAN S, SUN Q, et al. Donor plasma mitochondrial DNA is correlated with posttransplant renal allograft function[J]. Transplantation, 2019, 103(11):2347-2358. DOI: 10.1097/TP.0000000000002598.
    [34] BANK JR, VAN DER POL P, VREEKEN D, et al. Kidney injury molecule-1 staining in renal allograft biopsies 10 days after transplantation is inversely correlated with functioning proximal tubular epithelial cells[J]. Nephrol Dial Transplant, 2017, 32(12):2132-2141. DOI: 10.1093/ndt/gfx286.
    [35] REN H, ZHOU X, DAI D, et al. Assessment of urinary kidney injury molecule-1 and interleukin-18 in the early post-burn period to predict acute kidney injury for various degrees of burn injury[J]. BMC Nephrol, 2015, 16:142. DOI: 10.1186/s12882-015-0140-3.
    [36] SHAO X, TIAN L, XU W, et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a Meta-analysis[J]. PLoS One, 2014, 9(1):e84131. DOI: 10.1371/journal.pone.0084131.
    [37] PARIKH CR, THIESSEN-PHILBROOK H, GARG AX, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8(7):1079-1088. DOI: 10.2215/CJN.10971012.
    [38] LIANGOS O, PERIANAYAGAM MC, VAIDYA VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure[J]. J Am Soc Nephrol, 2007, 18(3):904-912. DOI: 10.1681/ASN.2006030221.
    [39] KOYAWALA N, REESE PP, HALL IE, et al. Urine injury biomarkers are not associated with kidney transplant failure[J]. Transplantation, 2020, 104(6):1272-1279. DOI: 10.1097/TP.0000000000002948.
    [40] ZHENG YT, CHEN CB, YUAN XP, et al. Impact of acute kidney injury in donors on renal graft survival: a systematic review and Meta-analysis[J]. Ren Fail, 2018, 40(1):649-656. DOI: 10.1080/0886022X.2018.1535982.
    [41] LANDEMAINE T, JACKSON A, BELLAHCÈNE A, et al. A six-gene signature predicting breast cancer lung metastasis[J]. Cancer Res, 2008, 68(15):6092-6099. DOI: 10.1158/0008-5472.CAN-08-0436.
    [42] ANDERS HJ, MURUVE DA. The inflammasomes in kidney disease[J]. J Am Soc Nephrol, 2011, 22(6):1007-1018. DOI: 10.1681/ASN.2010080798.
    [43] SCHREZENMEIER EV, BARASCH J, BUDDE K, et al. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance[J]. Acta Physiol (Oxf), 2017, 219(3):554-572. DOI: 10.1111/apha.12764.
    [44] LIANG H, XU F, ZHANG T, et al. Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion[J]. Biomed Pharmacother, 2018, 106:879-889. DOI: 10.1016/j.biopha.2018.07.031.
    [45] NYDAM TL, PLENTER R, JAIN S, et al. Caspase inhibition during cold storage improves graft function and histology in a murine kidney transplant model[J]. Transplantation, 2018, 102(9):1487-1495. DOI: 10.1097/TP.0000000000002218.
    [46] WU H, CRAFT ML, WANG P, et al. IL-18 contributes to renal damage after ischemia-reperfusion[J]. J Am Soc Nephrol, 2008, 19(12):2331-2341. DOI:10.1681/ASN. 2008020170.
    [47] PARIKH CR, COCA SG, THIESSEN-PHILBROOK H, et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery[J]. J Am Soc Nephrol, 2011, 22(9):1748-1757. DOI: 10.1681/ASN.2010121302.
    [48] PIANCATELLI D, MACCARONE D, COLANARDI A, et al. Kidney transplantation, polymorphisms of IL-18, and other pro-inflammatory genes and late post-transplant outcome[J]. Transplant Proc, 2016, 48(2):323-325. DOI: 10.1016/j.transproceed.2016.02.010.
    [49] ALGE JL, KARAKALA N, NEELY BA, et al. Urinary angiotensinogen and risk of severe AKI[J]. Clin J Am Soc Nephrol, 2013, 8(2):184-193. DOI:10.2215/CJN. 06280612.
    [50] KASHANI K, AL-KHAFAJI A, ARDILES T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1): R25. DOI: 10.1186/cc12503.
    [51] AREGGER F, UEHLINGER DE, WITOWSKI J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury[J]. Kidney Int, 2014, 85(4):909-919. DOI: 10.1038/ki.2013.363.
  • 加载中
计量
  • 文章访问数:  193
  • HTML全文浏览量:  31
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-07-15

目录

    /

    返回文章
    返回