留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用

胡莎莎 刘钰 王朝阳 杨爽 张国梁 蔡金贞

胡莎莎, 刘钰, 王朝阳, 等. HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用[J]. 器官移植, 2022, 13(1): 88-97. doi: 10.3969/j.issn.1674-7445.2022.01.014
引用本文: 胡莎莎, 刘钰, 王朝阳, 等. HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用[J]. 器官移植, 2022, 13(1): 88-97. doi: 10.3969/j.issn.1674-7445.2022.01.014
Hu Shasha, Liu Yu, Wang Chaoyang, et al. Effect of HMGB1/Caspase-1/GSDMD signaling axis-mediated hepatocyte pyroptosis on liver ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 88-97. doi: 10.3969/j.issn.1674-7445.2022.01.014
Citation: Hu Shasha, Liu Yu, Wang Chaoyang, et al. Effect of HMGB1/Caspase-1/GSDMD signaling axis-mediated hepatocyte pyroptosis on liver ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 88-97. doi: 10.3969/j.issn.1674-7445.2022.01.014

HMGB1/Caspase-1/GSDMD信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤中的作用

doi: 10.3969/j.issn.1674-7445.2022.01.014
基金项目: 

国家自然科学基金 81670600

详细信息
    作者简介:

    胡莎莎,1984年生,本科,主治医师,研究方向为消化内科,Email:89614625@qq.com

    通讯作者:

    张国梁,男,博士,主任医生,研究方向为消化内科,Email:zgl_022@126.com

    蔡金贞,男,博士,主任医师,研究方向为肝脏移植,Email:caijinzhen@sina.com

  • 中图分类号: R617, R364.5

Effect of HMGB1/Caspase-1/GSDMD signaling axis-mediated hepatocyte pyroptosis on liver ischemia-reperfusion injury

More Information
  • 摘要:   目的  探讨高迁移率族蛋白1(HMGB1)/半胱氨酸天冬氨酸蛋白酶(Caspase)-1/Gasdermin D(GSDMD)信号轴介导肝细胞焦亡在肝脏缺血-再灌注损伤(IRI)中的作用。  方法  将C57BL/6小鼠随机分为假手术组(Sham组)、IRI 2 h组、IRI 6 h组、IRI 12 h组、甘草酸(GA)+Sham组和GA+IRI 12 h组(每组8只);将AML12细胞大致均匀地分为Sham组、IRI 12 h组、GA+Sham组和GA+IRI 12 h组。采用酶联免疫吸附试验(ELISA)检测各组小鼠血清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、白细胞介素(IL)-1β和IL-6的水平;采用逆转录聚合酶链反应(RT-PCR)检测肝组织中IL-1β和IL-6信使核糖核酸(mRNA)水平;比较各组小鼠肝脏缺血病理学评分和细胞凋亡情况;采用免疫组织化学(免疫组化)法检测各组小鼠肝组织中HMGB1的表达情况;采用蛋白质印迹法检测小鼠肝组织和AML12细胞中HMGB1、Caspase-1、GSDMD蛋白的表达水平。  结果  与Sham组比较,IRI后各组小鼠血清中ALT、AST、IL-1β、IL-6水平,以及小鼠肝组织中的IL-1β、IL-6 mRNA相对表达量均升高(均为P < 0.05),且随着再灌注时间的延长呈明显的时间依赖性。与Sham组比较,IRI后各组小鼠肝脏缺血病理学评分和肝细胞凋亡率均升高(均为P < 0.05)。免疫组化结果显示,IRI后HMGB1在肝组织中的表达明显增多,且在2~12 h内随着时间延长而增多。蛋白质印迹法结果显示,在体内和在体外,与Sham组比较,IRI 12 h组HMGB1、Caspase-1和GSDMD蛋白相对表达量均升高;与IRI 12 h组比较,GA+IRI 12 h组HMGB1蛋白相对表达量升高,Caspase-1和GSDMD蛋白相对表达量均降低,差异均有统计学意义(均为P < 0.05)。  结论  肝细胞可能通过释放HMGB1激活Caspase-1/GSDMD通路,从而触发肝细胞发生焦亡,导致肝脏IRI,而通过GA抑制HMGB1的胞外释放可减轻肝脏IRI。

     

  • 图  1  各组小鼠血清ALT和AST水平比较

    注:与Sham组比较,aP < 0.05,与IRI 2 h组比较,bP < 0.05,与IRI 6 h组比较,cP < 0.05。

    Figure  1.  Comparison of serum ALT and AST levels of mice among each group

    图  2  各组小鼠肝组织和血清中IL-1β、IL-6水平比较

    注:A图为各组小鼠肝组织中IL-1β、IL-6 mRNA相对表达量比较;B图为各组小鼠血清中IL-1β、IL-6表达水平比较。与Sham组比较,aP < 0.05,与IRI 2 h组比较,bP < 0.05,与IRI 6 h组比较,cP < 0.05。

    Figure  2.  Comparison of IL-1β and IL-6 levels in liver tissues and serum of mice among each group

    图  3  各组小鼠肝组织病理学评分和细胞凋亡率比较

    注:A图为各组小鼠肝脏缺血病理学评分比较(HE,×100);B图为各组小鼠肝细胞凋亡率比较(TUNEL,×100)。与Sham组比较,aP < 0.05,与IRI 2 h组比较,bP < 0.05,与IRI 6 h组比较,cP < 0.05。

    Figure  3.  Comparison of histopathology score and cell apoptosis rate in liver tissues of mice among each group

    图  4  各组小鼠肝组织HMGB1的表达情况比较

    注:图示各组小鼠肝组织HMGB1的表达情况(免疫组化,×200)。与Sham组比较,aP < 0.05,与IRI 2 h组比较,bP < 0.05,与IRI 6 h组比较,cP < 0.05。

    Figure  4.  Comparison of the expression of HMGB1 in liver tissues of mice among each group

    图  5  各组小鼠肝组织HMGB1、Caspase-1和GSDMD蛋白表达情况

    注:与Sham组比较,aP < 0.05,与IRI 12 h组比较,bP < 0.05,与GA+Sham组比较,cP < 0.05。

    Figure  5.  Expression of HMGB1, Caspase-1 and GSDMD in liver tissues of mice among each group

    图  6  各组AML12细胞HMGB1、Caspase-1和GSDMD蛋白表达情况

    注:与Sham组比较,aP < 0.05,与IRI 12 h组比较,bP < 0.05,与GA+Sham组比较,cP < 0.05。

    Figure  6.  Expression of HMGB1, Caspase-1 and GSDMD in AML12 cells among each group

  • [1] JIMÉNEZ-CASTRO MB, CORNIDE-PETRONIO ME, GRACIA-SANCHO J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131. DOI: 10.3390/cells8101131.
    [2] 潘宁波, 张旭阳, 张玉, 等. AMPK激动剂预处理对肝缺血再灌注损伤大鼠模型的影响及相关机制[J]. 临床肝胆病杂志, 2021, 37(5): 1152-1157. DOI: 10.3969/j.issn.1001-5256.2021.05.034.

    PAN NB, ZHANG XY, ZHANG Y, et al. Effect of pretreatment with adenosine monophosphate -activated protein kinase agonist on a rat model of hepatic ischemia-reperfusion injury and related mechanism[J]. J Clin Hepatol, 2021, 37(5): 1152-1157. DOI: 10.3969/j.issn.1001-5256.2021.05.034.
    [3] JIANG X, KUANG G, GONG X, et al. Glycyrrhetinic acid pretreatment attenuates liver ischemia/reperfusion injury via inhibiting TLR4 signaling cascade in mice[J]. Int Immunopharmacol, 2019, 76: 105870. DOI: 10.1016/j.intimp.2019.105870.
    [4] HU ZG, ZHOU Y, LIN CJ, et al. Emerging recognition of the complement system in hepatic ischemia/reperfusion injury, liver regeneration and recovery (review)[J]. Exp Ther Med, 2021, 21(3): 223. DOI: 10.3892/etm.2021.9654.
    [5] WASEEM N, CHEN PH. Hypoxic hepatitis: a review and clinical update[J]. J Clin Transl Hepatol, 2016, 4(3): 263-268. DOI: 10.14218/JCTH.2016.00022.
    [6] 王小莹, 刘作金, 申丽娟. 缺血再灌注损伤与细胞焦亡的相关性研究进展[J]. 昆明医科大学学报, 2020, 41(12): 142-147. DOI: 10.12259/j.issn.2095-610X.S20201240.

    WANG XY, LIU ZJ, SHEN LJ. Review of correlation between ischemia-reperfusion injury and pyroptosis[J]. J Kunming Med Univ, 2020, 41(12): 142-147. DOI: 10.12259/j.issn.2095-610X.S20201240.
    [7] KIM SW, LEE JK. Role of HMGB1 in the interplay between NETosis and thrombosis in ischemic stroke: a review[J]. Cells, 2020, 9(8): 1794. DOI: 10.3390/cells9081794.
    [8] LENG Y, CHEN R, CHEN R, et al. HMGB1 mediates homocysteine-induced endothelial cells pyroptosis via cathepsin V-dependent pathway[J]. Biochem Biophys Res Commun, 2020, 532(4): 640-646. DOI: 10.1016/j.bbrc.2020.08.091.
    [9] 吴云娇, 黄锋, 卢创宏, 等. HMGB1介导线粒体自噬参与糖尿病小鼠心肌缺血/再灌注损伤[J]. 广西医科大学学报, 2021, 38(4): 655-661. DOI: 10.16190/j.cnki.45-1211/r.2021.04.005.

    WU YJ, HUANG F, LU CH, et al. HMGB1 mediates mitochondrial autophagy and participates in myocardial ischemia/reperfusion injury in diabetic mice[J]. J Guangxi Med Univ, 2021, 38(4): 655-661. DOI: 10.16190/j.cnki.45-1211/r.2021.04.005.
    [10] WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through Caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393.
    [11] TSUCHIYA K. Switching from apoptosis to pyroptosis: gasdermin-elicited inflammation and antitumor immunity[J]. Int J Mol Sci, 2021, 22(1): 426. DOI: 10.3390/ijms22010426.
    [12] ZHENG X, CHEN W, GONG F, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review[J]. Front Immunol, 2021, 12: 711939. DOI: 10.3389/fimmu.2021.711939.
    [13] HUA S, MA M, FEI X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated Kupffer cells pyroptosis[J]. Int Immunopharmacol, 2019, 68: 145-155. DOI: 10.1016/j.intimp.2019.01.002.
    [14] XIE K, CHEN YQ, CHAI YS, et al. HMGB1 suppress the expression of IL-35 by regulating Naïve CD4+ T cell differentiation and aggravating Caspase-11-dependent pyroptosis in acute lung injury[J]. Int Immunopharmacol, 2021, 91: 107295. DOI: 10.1016/j.intimp.2020.107295.
    [15] HOU J, HSU JM, HUNG MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity[J]. Mol Cell, 2021, 81(22): 4579-4590. DOI: 10.1016/j.molcel.2021.09.003.
    [16] TANG D, WANG H, BILLIAR TR, et al. Emerging mechanisms of immunocoagulation in sepsis and septic shock[J]. Trends Immunol, 2021, 42(6): 508-522. DOI: 10.1016/j.it.2021.04.001.
    [17] WU J, SUN J, MENG X. Pyroptosis by Caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases[J]. Pharmacol Res, 2021, 165: 105408. DOI: 10.1016/j.phrs.2020.105408.
    [18] LI S, ZHU Z, XUE M, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice[J]. Redox Biol, 2021, 40: 101859. DOI: 10.1016/j.redox.2021.101859.
    [19] LI J, ZHAO J, XU M, et al. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia-reperfusion injury[J]. Cell Death Dis, 2020, 11(4): 244. DOI: 10.1038/s41419-020-2437-9.
    [20] OGIKU M, KONO H, HARA M, et al. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats[J]. J Pharmacol Exp Ther, 2011, 339(1): 93-98. DOI: 10.1124/jpet.111.182592.
    [21] NOGUCHI D, KURIYAMA N, HIBI T, et al. The impact of dabigatran treatment on sinusoidal protection against hepatic ischemia/reperfusion injury in mice[J]. Liver Transpl, 2021, 27(3): 363-384. DOI: 10.1002/lt.25929.
    [22] MA J, HU H, LIN M, et al. ELABELA alleviates syncytiotrophoblast hypoxia/reoxygenation injury and preeclampsia-like symptoms in mice by reducing apoptosis[J]. Placenta, 2021, 106: 30-39. DOI: 10.1016/j.placenta.2021.02.002.
    [23] YE L, HE S, MAO X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation[J]. Front Immunol, 2020, 11: 1193. DOI: 10.3389/fimmu.2020.01193.
    [24] SHI G, ZHANG Z, MA S, et al. Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice[J]. Biochem Pharmacol, 2021, 192: 114728. DOI: 10.1016/j.bcp.2021.114728.
    [25] YANG Q, ZHAO ZZ, XIE J, et al. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways[J]. Int Immunopharmacol, 2021, 97: 107717. DOI: 10.1016/j.intimp.2021.107717.
    [26] XUE J, SUAREZ JS, MINAAI M, et al. HMGB1 as a therapeutic target in disease[J]. J Cell Physiol, 2021, 236(5): 3406-3419. DOI: 10.1002/jcp.30125.
    [27] VOONG CK, GOODRICH JA, KUGEL JF. Interactions of HMGB proteins with the genome and the impact on disease[J]. Biomolecules, 2021, 11(10): 1451. DOI: 10.3390/biom11101451.
    [28] XU L, GE F, HU Y, et al. Sevoflurane postconditioning attenuates hepatic ischemia-reperfusion injury by limiting HMGB1/TLR4/NF-κB pathway via modulating microRNA-142 in vivo and in vitro[J]. Front Pharmacol, 2021, 12: 646307. DOI: 10.3389/fphar.2021.646307.
    [29] NI YA, CHEN H, NIE H, et al. HMGB1: an overview of its roles in the pathogenesis of liver disease[J]. J Leukoc Biol, 2021, 110(5): 987-998. DOI: 10.1002/JLB.3MR0121-277R.
    [30] 刘涛, 刘伟欣, 贺明, 等. 丹参酮Ⅱ-A磺酸钠通过调控高迁移率组蛋白1减轻内毒素导致的大鼠急性肺损伤[J]. 实用医学杂志, 2020, 36(2): 164-169. DOI: 10.3969/j.issn.1006-5725.2020.02.007.

    LIU T, LIU WX, HE M, et al. Tanshinone ⅡA sodium sulfonate attenuates acute lung injury by inhibiting HMGB1 in lipopolysaccharide-induced shock rats[J]. J Pract Med, 2020, 36(2): 164-169. DOI: 10.3969/j.issn.1006-5725.2020.02.007.
    [31] ZHOU Y, CHEN Z, YANG X, et al. Morin attenuates pyroptosis of nucleus pulposus cells and ameliorates intervertebral disc degeneration via inhibition of the TXNIP/NLRP3/Caspase-1/IL-1β signaling pathway[J]. Biochem Biophys Res Commun, 2021, 559: 106-112. DOI: 10.1016/j.bbrc.2021.04.090.
    [32] GU G, HUO Y, XU G, et al. MicroRNA-204-GSDMD interaction regulates pyroptosis of fibroblast-like synoviocytes in ankylosing spondylitis[J]. Int Immunopharmacol, 2021, 91: 107227. DOI: 10.1016/j.intimp.2020.107227.
    [33] FAN K, YANG J, GONG WY, et al. NLRP3 inflammasome activation mediates sleep deprivation-induced pyroptosis in mice[J]. PeerJ, 2021, 9: e11609. DOI: 10.7717/peerj.11609.
    [34] HUMPHRIES F, SHMUEL-GALIA L, KETELUT-CARNEIRO N, et al. Succination inactivates Gasdermin D and blocks pyroptosis[J]. Science, 2020, 369(6511): 1633-1637. DOI: 10.1126/science.abb9818.
    [35] YE SM, ZHOU MZ, JIANG WJ, et al. Silencing of Gasdermin D by siRNA-loaded PEI-chol lipopolymers potently relieves acute gouty arthritis through inhibiting pyroptosis[J]. Mol Pharm, 2021, 18(2): 667-678. DOI: 10.1021/acs.molpharmaceut.0c00229.
    [36] 尹朝奇, 贺全勇, 罗成群, 等. HSF-1在HMGB1诱导的炎症反应中的作用[J]. 中国普通外科杂志, 2016, 25(9): 1291-1295. DOI: 10.3978/j.issn.1005-6947.2016.09.011.

    YIN ZQ, HE QY, LUO CQ, et al. Role of HSF-1 in inflammatory response induced by HMGB1[J]. Chin J Gen Surg, 2016, 25(9): 1291-1295. DOI: 10.3978/j.issn.1005-6947.2016.09.011.
    [37] SOSA RA, TERRY AQ, KALDAS FM, et al. Disulfide high-mobility group box 1 drives ischemia-reperfusion injury in human liver transplantation[J]. Hepatology, 2021, 73(3): 1158-1175. DOI: 10.1002/hep.31324.
    [38] ZHANG S, FENG Z, GAO W, et al. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway, oxidative stress, and apoptosis[J]. Front Pharmacol, 2020, 11: 544124. DOI: 10.3389/fphar.2020.544124.
    [39] NAKAMURA K, KAGEYAMA S, KALDAS FM, et al. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury[J]. J Clin Invest, 2020, 130(5): 2689-2704. DOI: 10.1172/JCI133142.
    [40] WANG W, WU L, LI J, et al. Alleviation of hepatic ischemia reperfusion injury by oleanolic acid pretreating via reducing HMGB1 release and inhibiting apoptosis and autophagy[J]. Mediators Inflamm, 2019: 3240713. DOI: 10.1155/2019/3240713.
  • 加载中
图(7)
计量
  • 文章访问数:  834
  • HTML全文浏览量:  241
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回