Volume 14 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Meng Qiang, Zhang Wenjie, Wu Weikang, et al. Preliminary study of the role of IL-18/IL-18BP in mediating cytotoxic ability of NK-92MI cells against endothelial cells from GTKO porcine models[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 75-82. doi: 10.3969/j.issn.1674-7445.2023.01.010
Citation: Meng Qiang, Zhang Wenjie, Wu Weikang, et al. Preliminary study of the role of IL-18/IL-18BP in mediating cytotoxic ability of NK-92MI cells against endothelial cells from GTKO porcine models[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 75-82. doi: 10.3969/j.issn.1674-7445.2023.01.010

Preliminary study of the role of IL-18/IL-18BP in mediating cytotoxic ability of NK-92MI cells against endothelial cells from GTKO porcine models

doi: 10.3969/j.issn.1674-7445.2023.01.010
More Information
  • Corresponding author: Tao Kaishan, Email: taokaishan0686@163.com
  • Received Date: 2022-11-14
    Available Online: 2023-01-17
  • Publish Date: 2023-01-15
  •   Objective  To evaluate the role and potential mechanism of interleukin (IL)-18/IL-18 binding protein (BP) in mediating the killing effect of natural killer (NK)-92MI cells upon endothelial cells from α-1, 3- galactosyltransferase gene-knockout (GTKO) porcine models.  Methods  NK-92MI cells were divided into the NK, NK+IL-18, NK+GTKO, IL-18+NK+GTKO and IL-18+IL-18BP+NK+GTKO groups. The messenger ribonucleic acid (mRNA) levels of inflammation-related genes in NK-92MI cells were detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The killing effect of NK-92MI cells on endothelial cells from GTKO porcine models was evaluated by lactate dehydrogenase (LDH) assay. The apoptosis of endothelial cells from GTKO porcine models was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The expression levels of proteins with killing effect and apoptosis-related proteins were determined by Western blot.  Results  Compared with the NK, NK+IL-18 and NK+GTKO groups, the expression levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-8, IL-3, IL-6 and granulocyte-macrophage colony stimulating factor (GM-CSF) mRNA were up-regulated in NK-92MI cells in the IL-18+NK+GTKO group, and the differences were statistically significant (all P < 0.05). Compared with the IL-18+NK+GTKO group, the expression levels of IFN-γ, TNF-α, IL-8, IL-3, IL-6 and GM-CSF mRNA were down-regulated in NK-92MI cells in the IL-18+IL-18BP+NK+GTKO group, and the differences were statistically significant (all P < 0.05). Compared with the NK+GTKO group, the expression levels of perforin, granzyme B and IFN-γ proteins in NK-92MI cells were up-regulated, the killing rate of NK-92MI cells against endothelial cells from GTKO porcine models was enhanced, the apoptosis rate of endothelial cells from GTKO porcine models was increased, and the ratios of B cell lymphoma-2 (Bcl-2)-associated X protein (Bax)/Bcl-2 and cleaved Caspase-3/Caspase-3 in endothelial cells from GTKO porcine models were elevated in the IL-18+NK+GTKO group, and the differences were statistically significant (all P < 0.05). Compared with the IL-18+NK+GTKO group, the expression levels of perforin, granzyme B and IFN-γ proteins were down-regulated, the killing rate of NK-92MI cells against endothelial cells from GTKO porcine models was decreased, the apoptosis rate of endothelial cells from GTKO porcine models was decreased, and the ratios of Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 in endothelial cells from GTKO porcine models were declined in the IL-18+IL-18BP+NK+GTKO group, and the differences were statistically significant (all P < 0.05).  Conclusions  IL-18BP may block the expression of inflammation-related genes in NK-92MI cells induced by IL-18 and the killing effect of NK-92MI cells on endothelial cells from GTKO porcine models.

     

  • loading
  • [1]
    窦科峰, 张玄. 临床异种器官移植十大问题的思考[J]. 器官移植, 2022, 13(4): 411-416. DOI: 10.3969/j.issn.1674-7445.2022.04.001.

    DOU KF, ZHANG X. Reflection on 10 problems of clinical xenotransplantation[J]. Organ Transplant, 2022, 13(4): 411-416. DOI: 10.3969/j.issn.1674-7445.2022.04.001.
    [2]
    中华医学会器官移植学分会. 中国肝移植术后并发症诊疗规范(2019版)[J]. 器官移植, 2021, 12(2): 129-133. DOI: 10.3969/j.issn.1674-7445.2021.02.002.

    Branch of Organ Transplantation of Chinese Medical Association. Diagnosis and treatment specification for postoperative complications after liver transplantation in China (2019 edition)[J]. Organ Transplant, 2021, 12(2): 129-133. DOI: 10.3969/j.issn.1674-7445.2021.02.002.
    [3]
    张玄, 李霄, 王权成, 等. 猪-猴肝移植中的凝血调节障碍问题[J/CD]. 实用器官移植电子杂志, 2018, 6(5): 399-404. DOI: 10.3969/j.issn.2095-5332.2018.05.015.

    ZHANG X, LI X, WANG QC, et al. Coagulation dysregulation in pig-monkey liver transplantation[J/CD]. Pract J Organ Transplant (Electr Vers), 2018, 6(5): 399-404. DOI: 10.3969/j.issn.2095-5332.2018.05.015.
    [4]
    淮国丽, 杜嘉祥, 潘登科. 基因编辑猪用于急性肝衰竭治疗的路径探讨[J]. 临床肝胆病杂志, 2022, 38(10): 2214-2218. DOI: 10.3969/j.issn.1001-5256.2022.10.004.

    HUAI GL, DU JX, PAN DK. The discussion on the genetically modified pigs for the treatment of acute liver failure[J]. J Clin Hepatol, 2022, 38(10): 2214-2218. DOI: 10.3969/j.issn.1001-5256.2022.10.004.
    [5]
    章忠强, 梁硕洲, 司中洲, 等. 异种肝移植中的急性体液性排斥反应[J]. 临床肝胆病杂志, 2022, 38(10): 2210-2213. DOI: 10.3969/j.issn.1001-5256.2022.10.003.

    ZHANG ZQ, LIANG SZ, SI ZZ, et al. Acute humoral rejection in liver xenotransplantation[J]. J Clin Hepatol, 2022, 38(10): 2210-2213. DOI: 10.3969/j.issn.1001-5256.2022.10.003.
    [6]
    JI H, LI X, YUE S, et al. Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model[J]. Cell Physiol Biochem, 2015, 36(1): 233-249. DOI: 10.1159/000374067.
    [7]
    ZHANG X, COOPER DKC, DOU KF. Genetically-engineered pig-to-human organ transplantation: a new beginning[J]. Sci Bull, 2022, 67(18): 1827-1829. doi: 10.1016/j.scib.2022.08.026
    [8]
    HUANG H, LU Y, ZHOU T, et al. Innate immune cells in immune tolerance after liver transplantation[J]. Front Immunol, 2018, 9: 2401. DOI: 10.3389/fimmu.2018.02401.
    [9]
    HALMA J, PIERCE S, MCLENNAN R, et al. Natural killer cells in liver transplantation: can we harness the power of the immune checkpoint to promote tolerance?[J]. Clin Transl Sci, 2022, 15(5): 1091-1103. DOI: 10.1111/cts.13208.
    [10]
    FERNÁNDEZ-RUIZ M, SILVA JT, LÓPEZ-MEDRANO F, et al. Post-transplant monitoring of NK cell counts as a simple approach to predict the occurrence of opportunistic infection in liver transplant recipients[J]. Transpl Infect Dis, 2016, 18(4): 552-565. DOI: 10.1111/tid.12564.
    [11]
    王光川, LI XC. 天然免疫细胞的获得性免疫属性及其在移植排斥中的作用[J]. 中华消化外科杂志, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.

    WANG GC, LI XC. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chin J Dig Surg, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.
    [12]
    张玄, 王琳, 张洪涛, 等. 多基因编辑猪-猴心脏、肝脏、肾脏移植临床前研究初步报道[J]. 器官移植, 2021, 12(1): 51-56. DOI: 10.3969/j.issn.1674-7445.2021.01.008.

    ZHANG X, WANG L, ZHANG HT, et al. Preliminary report of preclinical trial of multi-genome engineering pig-to-macaque heart, liver and kidney transplantation[J]. Organ Transplant, 2021, 12(1): 51-56. DOI: 10.3969/j.issn.1674-7445.2021.01.008.
    [13]
    吕丹, 金迪, 王柏山, 等. IL-18BP阻断由IL-18诱导大鼠胶原性关节炎对滑膜细胞凋亡表达的影响[J]. 中国免疫学杂志, 2017, 33(8): 1161-1163. DOI: 10.3969/j.issn.1000-484X.2017.08.008.

    LYU D, JIN D, WANG BS, et al. Effects of IL-18BP blockade on apoptosis of synovial cell in IL-18-induced mice with collagen-induced-arthritis[J]. Chin J Immunol, 2017, 33(8): 1161-1163. DOI: 10.3969/j.issn.1000-484X.2017.08.008.
    [14]
    熊俊慧, 陈坚, 陈洁倩, 等. 人疱疹病毒6型感染及IL-18基因多态性与类风湿性关节炎易感性的关联[J]. 中华医院感染学杂志, 2022, 32(22): 3402-3407. DOI: 10.11816/cn.ni.2202-220542.

    XIONG JH, CHEN J, CHEN JQ, et al. Association of human herpes virus 6 infection, IL-18 gene polymorphisms with susceptibility to rheumatoid arthritis[J]. Chin J Nosocomiol, 2022, 32(22): 3402-3407. DOI: 10.11816/cn.ni.2202-220542.
    [15]
    李璐, 李文强, 胡念丹, 等. 血清IL-18水平评估脓毒症患者病情严重程度的价值[J]. 中国急救复苏与灾害医学杂志, 2022, 17(2): 221-224, 229. DOI: 10.3969/j.issn.1673-6966.2022.02.023.

    LI L, LI WQ, HU ND, et al. The value of serum IL-18 level in evaluating the severity of sepsis[J]. Chin J Emerg Resusc Dis Med, 2022, 17(2): 221-224, 229. DOI: 10.3969/j.issn.1673-6966.2022.02.023.
    [16]
    IHIM SA, ABUBAKAR SD, ZIAN Z, et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment[J]. Front Immunol, 2022, 13: 919973. DOI: 10.3389/fimmu.2022.919973.
    [17]
    PARK SY, HISHAM Y, SHIN HM, et al. Interleukin-18 binding protein in immune regulation and autoimmune diseases[J]. Biomedicines, 2022, 10(7): 1750. DOI: 10.3390/biomedicines10071750.
    [18]
    FAGGIONI R, CATTLEY RC, GUO J, et al. IL-18-binding protein protects against lipopolysaccharide- induced lethality and prevents the development of Fas/Fas ligand-mediated models of liver disease in mice[J]. J Immunol, 2001, 167(10): 5913-5920. DOI: 10.4049/jimmunol.167.10.5913.
    [19]
    BANDA NK, VONDRACEK A, KRAUS D, et al. Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein[J]. J Immunol, 2003, 170(4): 2100-2105. DOI: 10.4049/jimmunol.170.4.2100.
    [20]
    李家富, 许华, 王勇强. IL-18抑制剂对脓毒症并发血小板减少小鼠的保护作用[J]. 天津医科大学学报, 2021, 27(5): 487-491. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYK202105010.htm

    LI JF, XU H, WANG YQ. Protective effects of IL-18 inhibitors on sepsis associated thrombocytopenia in mice[J]. J Tianjin Med Univ, 2021, 27(5): 487-491. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYK202105010.htm
    [21]
    秦爱玲, 梁丹. 探讨IL-18BP对卵巢癌的保护作用及可能被调控的机制[J]. 右江民族医学院学报, 2021, 43(4): 476-480. DOI: 10.3969/j.issn.1001-5817.2021.04.007.

    QIN AL, LIANG D. The protective effect of IL-18BP on ovarian cancer and the possible regulation mechanism[J]. J Youjiang Med Univ Natl, 2021, 43(4): 476-480. DOI: 10.3969/j.issn.1001-5817.2021.04.007.
    [22]
    LOPEZ KJ, CROSS-NAJAFI AA, FARAG K, et al. Strategies to induce natural killer cell tolerance in xenotransplantation[J]. Front Immunol, 2022, 13: 941880. DOI: 10.3389/fimmu.2022.941880.
    [23]
    MAEDA A, KOGATA S, TOYAMA C, et al. The innate cellular immune response in xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
    [24]
    窦科峰, 纪洪辰. 异种肝移植的研究和进展[J]. 外科理论与实践, 2016, 21(3): 192-195. DOI: 10.3969/j.issn.1007-9610.2016.03.003.

    DOU KF, JI HC. Research and progress of liver xenotransplantation[J]. J Surg Concepts Pract, 2016, 21(3): 192-195. DOI: 10.3969/j.issn.1007-9610.2016.03.003.
    [25]
    陶开山, 李霄, 窦科峰. 异种肝移植的历史与发展[J]. 器官移植, 2017, 8(2): 85-88. DOI: 10.3969/j.issn.1674-7445.2017.02.001.

    TAO KS, LI X, DOU KF. History and development of liver xenotransplantation[J]. Organ Transplant, 2017, 8(2): 85-88. DOI: 10.3969/j.issn.1674-7445.2017.02.001.
    [26]
    LEE BT, FIEL MI, SCHIANO TD. Antibody-mediated rejection of the liver allograft: an update and a clinico-pathological perspective[J]. J Hepatol, 2021, 75(5): 1203-1216. DOI: 10.1016/j.jhep.2021.07.027.
    [27]
    HOU X, TONG Q, WANG W, et al. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways[J]. Life Sci, 2015, 130: 38-46. DOI: 10.1016/j.lfs.2015.03.007.
    [28]
    张立坤, 邵东风, 王东海, 等. 绿原酸通过Bax/Bcl-2/Caspase-3信号通路对喉癌Hep-2细胞增殖、凋亡的影响[J]. 中国医院用药评价与分析, 2022, 22(10): 1206-1210. DOI: 10.14009/j.issn.1672-2124.2022.10.012.

    ZHANG LK, SHAO DF, WANG DH, et al. Effects of chlorogenic acid on proliferation and apoptosis of laryngeal cancer Hep-2 cells through Bax/Bcl-2/Caspase-3 signaling pathway[J]. Eval Anal Drug-use Hosp Chin, 2022, 22(10): 1206-1210. DOI: 10.14009/j.issn.1672-2124.2022.10.012.
    [29]
    FLORES-ROMERO H, HOHORST L, JOHN M, et al. Bcl-2-family protein tBID can act as a Bax-like effector of apoptosis[J]. EMBO J, 2022, 41(2): e108690. DOI: 10.15252/embj.2021108690.
    [30]
    SPITZ AZ, GAVATHIOTIS E. Physiological and pharmacological modulation of Bax[J]. Trends Pharmacol Sci, 2022, 43(3): 206-220. DOI: 10.1016/j.tips.2021.11.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (322) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return