留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种移植排斥反应及其预防治疗策略

何小舟, 付嘉钊, 周萃星. 异种移植排斥反应及其预防治疗策略[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024079
引用本文: 何小舟, 付嘉钊, 周萃星. 异种移植排斥反应及其预防治疗策略[J]. 器官移植. doi: 10.3969/j.issn.1674-7445.2024079
He Xiaozhou, Fu Jiazhao, Zhou Cuixing. Xenotransplantation rejection and preventive and therapeutic strategies[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024079
Citation: He Xiaozhou, Fu Jiazhao, Zhou Cuixing. Xenotransplantation rejection and preventive and therapeutic strategies[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024079

异种移植排斥反应及其预防治疗策略

doi: 10.3969/j.issn.1674-7445.2024079
基金项目: 江苏省自然科学基金(BK20211064)
详细信息
    作者简介:
    通讯作者:

    何小舟(ORCID 0000-0002-7969-7386),Email:hyx@suda.edu.cn

  • 中图分类号: R617, Q78

Xenotransplantation rejection and preventive and therapeutic strategies

More Information
  • 摘要: 异种移植是解决人类器官短缺问题的潜在方案。在过去的上百年里,异种移植经历了早期尝试和不断进步,目前已进入新的高速发展阶段,取得了一系列的成果,但异种移植排斥反应的管理较同种异体器官移植排斥反应更为棘手。为此,研究者们开发出了一系列免疫抑制策略,如使用基因修饰猪供体、使用传统和新型免疫抑制药、将供体猪的胸腺与供器官一同移植等,以实现调整受体免疫系统反应,降低排斥反应强度并延长移植物存活时间。本文就异种移植排斥反应发生机制、预防和治疗策略的相关研究进行评述,以期为促进异种移植的进一步发展提供参考。

     

  • [1] MORTICELLI L, ROSSDAM C, CAJIC S, et al. Genetic knockout of porcine GGTA1 or CMAH/GGTA1 is associated with the emergence of neo-glycans[J]. Xenotransplantation, 2023, 30(4): e12804. DOI: 10.1111/xen.12804.
    [2] HWANG SA, PARK KS, KIM WS, et al. Current status of genetically engineered pig to monkey kidney xenotransplantation in Korea[J]. Transplant Proc, 2023, 55(4): 1043-1047. DOI: 10.1016/j.transproceed.2023.03.060.
    [3] CHOE HM, LUO ZB, KANG JD, et al. Pathological features in 'humanized' neonatal pig[J]. Anim Biotechnol, 2023, 34(2): 301-309. DOI: 10.1080/10495398.2021.1962896.
    [4] GALILI U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy[J]. Immunol Cell Biol, 2005, 83(6): 674-686. DOI: 10.1111/j.1440-1711.2005.01366.x.
    [5] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982): 393-401. DOI: 10.1038/s41586-023-06594-4.
    [6] 罗登科. 巨噬细胞在器官移植免疫排斥反应中的研究进展[J]. 海南医学, 2022, 33(16): 2148-2152. DOI: 10.3969/j.issn.1003-6350.2022.16.029.

    LUO DK. Research progress of macrophages in immune rejection of organ transplantation[J]. Hainan Med J, 2022, 33(16): 2148-2152. DOI: 10.3969/j.issn.1003-6350.2022.16.029.
    [7] IDE K, WANG H, TAHARA H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. Proc Natl Acad Sci U S A, 2007, 104(12): 5062-5066. DOI: 10.1073/pnas.0609661104.
    [8] COOPER DK, GOLLACKNER B, SACHS DH. Will the pig solve the transplantation backlog?[J]. Annu Rev Med, 2002, 53: 133-147. DOI: 10.1146/annurev.med.53.082901.103900.
    [9] YANG YG, SYKES M. Xenotransplantation: current status and a perspective on the future[J]. Nat Rev Immunol, 2007, 7(7): 519-531. DOI: 10.1038/nri2099.
    [10] PIERSON RN 3RD, DORLING A, AYARES D, et al. Current status of xenotransplantation and prospects for clinical application[J]. Xenotransplantation, 2009, 16(5): 263-280. DOI: 10.1111/j.1399-3089.2009.00534.x.
    [11] MURPHY WJ, KUMAR V, BENNETT M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells. differences in kinetics and target antigens recognized[J]. J Exp Med, 1987, 166(5): 1499-1509. DOI: 10.1084/jem.166.5.1499.
    [12] WATIER H, GUILLAUMIN JM, VALLÉE I, et al. Human NK cell-mediated direct and IgG-dependent cytotoxicity against xenogeneic porcine endothelial cells[J]. Transpl Immunol, 1996, 4(4): 293-299. DOI: 10.1016/s0966-3274(96)80050-5.
    [13] 安哲昆, 蔡明. 髓系树突状细胞参与肾缺血再灌注所致急性肾损伤的研究进展[J/OL]. 泌尿外科杂志(电子版), 2021, 13(3): 98-100, 104. DOI: 10.3969/j.issn.1674-7410.2021.03.024.

    AN ZK, CAI M. Research progress on the involvement of myeloid dendritic cells in acute renal injury caused by renal ischemia-reperfusion[J/OL]. J Urol Clin (Electr Vers), 2021, 13(3): 98-100, 104. DOI: 10.3969/j.issn.1674-7410.2021.03.024.
    [14] JONGBLOED SL, KASSIANOS AJ, MCDONALD KJ, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens[J]. J Exp Med, 2010, 207(6): 1247-1260. DOI: 10.1084/jem.20092140.
    [15] IEMITSU K, SAKAI R, MAEDA A, et al. The hybrid CL-SP-D molecule has the potential to regulate xenogeneic rejection by human neutrophils more efficiently than CD47[J]. Transpl Immunol, 2024, 84: 102020. DOI: 10.1016/j.trim.2024.102020.
    [16] ZENG W, SONG Y, WANG R, et al. Neutrophil elastase: from mechanisms to therapeutic potential[J]. J Pharm Anal, 2023, 13(4): 355-366. DOI: 10.1016/j.jpha.2022.12.003.
    [17] YADAV SK, PARK S, LEE YM, et al. Application of microphysiologic system to assess neutrophil extracellular trap in xenotransplantation[J]. J Immunol Methods, 2023, 521: 113537. DOI: 10.1016/j.jim.2023.113537.
    [18] COWAN PJ, D'APICE AJ. Complement activation and coagulation in xenotransplantation[J]. Immunol Cell Biol, 2009, 87(3): 203-208. DOI: 10.1038/icb.2008.107.
    [19] CROSS-NAJAFI AA, LOPEZ K, ISIDAN A, et al. Current barriers to clinical liver xenotransplantation[J]. Front Immunol, 2022, 13: 827535. DOI: 10.3389/fimmu.2022.827535.
    [20] BURDORF L, GAO Z, RINER A, et al. Expression of human thrombomodulin by GalTKO. hCD46 pigs modulates coagulation cascade activation by endothelial cells and during ex vivo lung perfusion with human blood[J]. Xenotransplantation, 2023, 30(6): e12828. DOI: 10.1111/xen.12828.
    [21] YAMADA K, SACHS DH, DERSIMONIAN H. Human anti-porcine xenogeneic T cell response. evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition[J]. J Immunol, 1995, 155(11): 5249-5256. DOI: 10.4049/jimmunol.155.11.5249.
    [22] DORLING A, LOMBARDI G, BINNS R, et al. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population[J]. Eur J Immunol, 1996, 26(6): 1378-1387. DOI: 10.1002/eji.1830260630.
    [23] SCALEA J, HANECAMP I, ROBSON SC, et al. T-cell-mediated immunological barriers to xenotransplantation[J]. Xenotransplantation, 2012, 19(1): 23-30. DOI: 10.1111/j.1399-3089.2011.00687.x.
    [24] GALILI U. Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody[J]. Springer Semin Immunopathol, 1993, 15(2/3): 155-171. DOI: 10.1007/BF00201098.
    [25] XU Y, YANG YG, OHDAN H, et al. Characterization of anti-Gal antibody-producing cells of baboons and humans[J]. Transplantation, 2006, 81(6): 940-948. DOI: 10.1097/01.tp.0000203300.87272.a3.
    [26] TANEMURA M, YIN D, CHONG AS, et al. Differential immune responses to alpha-gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation[J]. J Clin Invest, 2000, 105(3): 301-310. DOI: 10.1172/JCI7358.
    [27] SHIMIZU I, KAWAHARA T, HASPOT F, et al. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-alphaGAL-producing B-1 cells[J]. Blood, 2007, 109(4): 1773-1781. DOI: 10.1182/blood-2006-02-002386.
    [28] TASAKI M, SHIMIZU A, HANEKAMP I, et al. Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation[J]. J Am Soc Nephrol, 2014, 25(4): 737-744. DOI: 10.1681/ASN.2013040363.
    [29] XI J, ZHENG W, CHEN M, et al. Genetically engineered pigs for xenotransplantation: hopes and challenges[J]. Front Cell Dev Biol, 2023, 10: 1093534. DOI: 10.3389/fcell.2022.1093534.
    [30] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. DOI: 10.1038/ncomms11138.
    [31] EISENSON DL, HISADOME Y, SANTILLAN MR, et al. Progress in islet xenotransplantation: immunologic barriers, advances in gene editing, and tolerance induction strategies for xenogeneic islets in pig-to-primate transplantation[J]. Front Transplant, 2022, 1: 989811. DOI: 10.3389/frtra.2022.989811.
    [32] ARABI TZ, SABBAH BN, LERMAN A, et al. Xenotransplantation: current challenges and emerging solutions[J]. Cell Transplant, 2023, 32: 9636897221148771. DOI: 10.1177/09636897221148771.
    [33] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [34] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1889-1898. DOI: 10.1056/NEJMoa2120238.
    [35] LOCKE JE, KUMAR V, ANDERSON D, et al. Normal graft function after pig-to-human kidney xenotransplant[J]. JAMA Surg, 2023, 158(10): 1106-1108. DOI: 10.1001/jamasurg.2023.2774.
    [36] Two-month study of pig kidney xenotransplantation gives new hope to the future of the organ supply[EB/OL]. [2024-01-30]. https://nyulangone.org/news/two-month-study-pig-kidney-xenotransplantation-gives-new-hope-future-organ-supply.
    [37] LOUPY A, GOUTAUDIER V, GIARRAPUTO A, et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study[J]. Lancet, 2023, 402(10408): 1158-1169. DOI: 10.1016/S0140-6736(23)01349-1.
    [38] ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [39] CHABAN R, HABIBABADY Z, HASSANEIN W, et al. Knock-out of N-glycolylneuraminic acid attenuates antibody-mediated rejection in xenogenically perfused porcine lungs[J]. Xenotransplantation, 2022, 29(6): e12784. DOI: 10.1111/xen.12784.
    [40] DUCA M, MALAGOLINI N, DALL'OLIO F. The story of the Sda antigen and of its cognate enzyme B4GALNT2: what is new?[J]. Glycoconj J, 2023, 40(1): 123-133. DOI: 10.1007/s10719-022-10089-1.
    [41] YOON S, LEE S, PARK C, et al. An efficacious transgenic strategy for triple knockout of xeno-reactive antigen genes GGTA1, CMAH, and B4GALNT2 from Jeju native pigs[J]. Vaccines (Basel), 2022, 10(9): 1503. DOI: 10.3390/vaccines10091503.
    [42] SINGIREDDY S, TULLY A, GALINDO J, et al. Genetic engineering of donor pig for the first human cardiac xenotransplantation: combatting rejection, coagulopathy, inflammation, and excessive growth[J]. Curr Cardiol Rep, 2023, 25(11): 1649-1656. DOI: 10.1007/s11886-023-01978-4.
    [43] MA D, HIROSE T, LASSITER G, et al. Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques[J]. Am J Transplant, 2022, 22(1): 46-57. DOI: 10.1111/ajt.16780.
    [44] CIMENO A, KURAVI K, SORRELLS L, et al. hEPCR. hTBM. hCD47. hHO-1 with donor clodronate and DDAVP treatment improves perfusion and function of GalTKO. hCD46 porcine livers perfused with human blood[J]. Xenotransplantation, 2022, 29(2): e12731. DOI: 10.1111/xen.12731.
    [45] BURDORF L, LAIRD CT, HARRIS DG, et al. Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments[J]. Am J Transplant, 2022, 22(1): 28-45. DOI: 10.1111/ajt.16809.
    [46] PHIMISTER EG. Genetic modification in pig-to-human transplantation[J]. N Engl J Med, 2022, 387(1): 79-82. DOI: 10.1056/NEJMe2207422.
    [47] MIURA S, HABIBABADY ZA, POLLOK F, et al. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO. hCD46 pig lung perfusion with human blood[J]. Xenotransplantation, 2022, 29(2): e12725. DOI: 10.1111/xen.12725.
    [48] TAKEUCHI K, ARIYOSHI Y, SHIMIZU A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation[J]. Xenotransplantation, 2021, 28(6): e12708. DOI: 10.1111/xen.12708.
    [49] WEISS EH, LILIENFELD BG, MÜLLER S, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity[J]. Transplantation, 2009, 87(1): 35-43. DOI: 10.1097/TP.0b013e318191c784.
    [50] WANG M. Glucocorticoids block T cell recruitment[J]. Nat Rev Nephrol, 2023, 19(2): 73. DOI: 10.1038/s41581-022-00674-w.
    [51] SAFARINI OA, KESHAVAMURTHY C, PATEL P. Calcineurin inhibitors[M]. Treasure Island (FL): StatPearls Publishing, 2024.
    [52] BAUER AC, FRANCO RF, MANFRO RC. Immunosuppression in kidney transplantation: state of the art and current protocols[J]. Curr Pharm Des, 2020, 26(28): 3440-3450. DOI: 10.2174/13816128266662005 21142448.
    [53] SETHI S, JORDAN SC. Novel therapies for treatment of antibody-mediated rejection of the kidney[J]. Curr Opin Organ Transplant, 2023, 28(1): 29-35. DOI: 10.1097/MOT.0000000000001037.
    [54] ZHAO Y, COOPER DKC, WANG H, et al. Potential pathological role of pro-inflammatory cytokines (IL-6, TNF-α, and IL-17) in xenotransplantation[J]. Xenotransplantation, 2019, 26(3): e12502. DOI: 10.1111/xen.12502.
    [55] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO. hCD46Tg pig-to-baboon model[J]. Xenotransplantation, 2014, 21(1): 35-45. DOI: 10.1111/xen.12066.
    [56] WANG D, BAI X, WANG B, et al. CTLA4Ig/VISTAIg combination therapy selectively induces CD4+ T cell-mediated immune tolerance by targeting the SOCS1 signaling pathway in porcine islet xenotransplantation[J]. Immunology, 2022, 166(2): 169-184. DOI: 10.1111/imm.13463.
    [57] LINSLEY PS, WALLACE PM, JOHNSON J, et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule[J]. Science, 1992, 257(5071): 792-795. DOI: 10.1126/science.1496399.
    [58] LENSCHOW DJ, ZENG Y, THISTLETHWAITE JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg[J]. Science, 1992, 257(5071): 789-792. DOI: 10.1126/science.1323143.
    [59] SCHMITZ R, FITCH ZW, SCHRODER PM, et al. C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates[J]. Nat Commun, 2021, 12(1): 5456. DOI: 10.1038/s41467-021-25745-7.
    [60] MARÍN E, CUTURI MC, MOREAU A. Tolerogenic dendritic cells in solid organ transplantation: where do we stand?[J]. Front Immunol, 2018, 9: 274. DOI: 10.3389/fimmu.2018.00274.
    [61] ZHOU Q, LI T, WANG K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 2022, 13: 928173. DOI: 10.3389/fimmu.2022.928173.
    [62] YAMADA K, YAZAWA K, SHIMIZU A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 2005, 11(1): 32-34. DOI: 10.1038/nm1172.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 网络出版日期:  2024-07-08

目录

    /

    返回文章
    返回