留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低镁血症与肾移植:免疫影响及感染风险的研究进展

胡瑶, 刘玲. 低镁血症与肾移植:免疫影响及感染风险的研究进展[J]. 器官移植, 2024, 15(4): 648-652. doi: 10.3969/j.issn.1674-7445.2024029
引用本文: 胡瑶, 刘玲. 低镁血症与肾移植:免疫影响及感染风险的研究进展[J]. 器官移植, 2024, 15(4): 648-652. doi: 10.3969/j.issn.1674-7445.2024029
Hu Yao, Liu Ling. Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 648-652. doi: 10.3969/j.issn.1674-7445.2024029
Citation: Hu Yao, Liu Ling. Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 648-652. doi: 10.3969/j.issn.1674-7445.2024029

低镁血症与肾移植:免疫影响及感染风险的研究进展

doi: 10.3969/j.issn.1674-7445.2024029
基金项目: 国家自然科学基金(81873881)
详细信息
    作者简介:
    通讯作者:

    刘玲(ORCID 0000-0002-5544-8035),博士,副主任医师,研究方向为肾移植,Email: 2335374751@qq.com

  • 中图分类号: R617, R63

Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk

More Information
  • 摘要: 镁作为细胞内含量丰富且具有广泛作用的阳离子,在免疫功能方面发挥着积极的作用,备受关注。在多种因素的影响下,如使用钙调磷酸酶抑制剂等,肾移植术后低镁血症的发生并不罕见。感染是肾移植术后常见的并发症,也是导致肾移植受者死亡的常见原因之一。近年来的临床研究表明,肾移植术后低镁血症与移植后感染风险密切相关。在肾移植受者中关注并监测镁浓度可能有助于预防感染的发生,改善受者及移植物预后。因此,本文就镁与免疫反应、肾移植术后低镁血症发生的原因及肾移植术后低镁血症与感染的相关研究进展进行综述,以期为肾移植术后感染的预防与治疗提供参考。

     

  • FIG. 3264.  FIG. 3264.

    FIG. 3264..  FIG. 3264.

  • [1] 冼盈, 段智勤, 李衡, 等. 肾移植术后感染病原菌特点及死亡风险[J]. 中国感染控制杂志, 2023, 22(5): 539-546. DOI: 10.12138/j.issn.1671-9638.20233265.

    XIAN Y, DUAN ZQ, LI H, et al. Characteristics of infection pathogens and risk of death after kidney trans-plantation[J]. Chin J Infect Control, 2023, 22(5): 539-546. DOI: 10.12138/j.issn.1671-9638.20233265.
    [2] VAN LAECKE S, VERMEIREN P, NAGLER EV, et al. Magnesium and infection risk after kidney transplantation: an observational cohort study[J]. J Infect, 2016, 73(1): 8-17. DOI: 10.1016/j.jinf.2016.04.007.
    [3] BARBAGALLO M, VERONESE N, DOMINGUEZ LJ. Magnesium in aging, health and diseases[J]. Nutrients, 2021, 13(2): 463. DOI: 10.3390/nu13020463.
    [4] BOSMAN W, HOENDEROP JGJ, DE BAAIJ JHF. Genetic and drug-induced hypomagnesemia: different cause, same mechanism[J]. Proc Nutr Soc, 2021, 80(3): 327-338. DOI: 10.1017/S0029665121000926.
    [5] ASHIQUE S, KUMAR S, HUSSAIN A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer[J]. J Health Popul Nutr, 2023, 42(1): 74. DOI: 10.1186/s41043-023-00423-0.
    [6] FREEMAN CM, WRIGHT BL, BAUER CS, et al. Cutaneous T-cell lymphoma as a unique presenting malignancy in X-linked magnesium defect with EBV infection and neoplasia (XMEN) disease[J]. Clin Immunol, 2021, 226: 108722. DOI: 10.1016/j.clim.2021.108722.
    [7] DE GROOT PF, KWAKERNAAK AJ, VAN LEEUWEN EMM, et al. Case report: XMEN disease: a patient with recurrent Hodgkin lymphoma and immune thrombocytopenia[J]. Front Med (Lausanne), 2023, 10: 1264329. DOI: 10.3389/fmed.2023.1264329.
    [8] CHAIGNE-DELALANDE B, LI FY, O'CONNOR GM, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D[J]. Science, 2013, 341(6142): 186-191. DOI: 10.1126/science.1240094.
    [9] BRAULT J, MEIS RJ, LI L, et al. MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease[J]. Cytotherapy, 2021, 23(3): 203-210. DOI: 10.1016/j.jcyt.2020.08.013.
    [10] LÖTSCHER J, MARTÍ I LÍNDEZ AA, KIRCHHAMMER N, et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function[J]. Cell, 2022, 185(4): 585-602. DOI: 10.1016/j.cell.2021.12.039.
    [11] KAPNICK SM, STINCHCOMBE JC, GRIFFITHS GM, et al. Inducible T cell kinase regulates the acquisition of cytolytic capacity and degranulation in CD8+ CTLs[J]. J Immunol, 2017, 198(7): 2699-2711. DOI: 10.4049/jimmunol.1601202.
    [12] KANELLOPOULOU C, GEORGE AB, MASUTANI E, et al. Mg2+ regulation of kinase signaling and immune function[J]. J Exp Med, 2019, 216(8): 1828-1842. DOI: 10.1084/jem.20181970.
    [13] HOWE MK, DOWDELL K, ROY A, et al. Magnesium restores activity to peripheral blood cells in a patient with functionally impaired interleukin-2-inducible T cell kinase[J]. Front Immunol, 2019, 10: 2000. DOI: 10.3389/fimmu.2019.02000.
    [14] LIANG HY, CHEN Y, WEI X, et al. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases[J]. Immunology, 2022, 165(1): 3-21. DOI: 10.1111/imm.13420.
    [15] MAHTANI T, TREANOR B. Beyond the CRAC: diversification of ion signaling in B cells[J]. Immunol Rev, 2019, 291(1): 104-122DOI: 10.1111/imr.12770.

    MAHTANI T, TREANOR B. Beyond the CRAC: diversification of ion signaling in B cells[J]. Immunol Rev, 2019, 291(1): 104-122DOI: 10.1111/imr.12770.
    [16] GOTRU SK, GIL-PULIDO J, BEYERSDORF N, et al. Cutting edge: imbalanced cation homeostasis in MAGTL-deficient B cells dysregulates B cell development and signaling in mice[J]. J Immunol, 2018, 200(8): 2529-2534. DOI: 10.4049/jimmunol.1701467.
    [17] QIAO W, WONG KHM, SHEN J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun, 2021, 12(1): 2885. DOI: 10.1038/s41467-021-23005-2.
    [18] STEFANACHE A, LUNGU II, BUTNARIU IA, et al. Understanding how minerals contribute to optimal immune function[J]. J Immunol Res, 2023: 3355733. DOI: 10.1155/2023/3355733.
    [19] LA CARRUBBA A, VERONESE N, DI BELLA G, et al. Prognostic value of magnesium in COVID-19: findings from the COMEPA study[J]. Nutrients, 2023, 15(4): 830. DOI: 10.3390/nu15040830.
    [20] ODLER B, DEAK AT, PREGARTNER G, et al. Hypomagnesemia is a risk factor for infections after kidney transplantation: a retrospective cohort analysis[J]. Nutrients, 2021, 13(4): 1296. DOI: 10.3390/nu13041296.
    [21] REZAZADEH H, SHARIFI MR, SHARIFI M, et al. Magnesium sulfate improves insulin resistance in high fat diet induced diabetic parents and their offspring[J]. Eur J Pharmacol, 2021, 909: 174418. DOI: 10.1016/j.ejphar.2021.174418.
    [22] DE SOUSA MELO SR, DOS SANTOS LR, DA CUNHA SOARES T, et al. Participation of magnesium in the secretion and signaling pathways of insulin: an updated review[J]. Biol Trace Elem Res, 2022, 200(8): 3545-3553. DOI: 10.1007/s12011-021-02966-x.
    [23] 杨玉亭, 左庆娟, 郭艺芳. 镁和代谢紊乱[J]. 中国心血管杂志, 2023, 28(2): 189-192. DOI: 10.3969/j.issn.1007-5410.2023.02.019.

    YANG YT, ZUO QJ, GUO YF. Magnesium and metabolic disorders[J]. Chin J Cardiovascular Med, 2023, 28(2): 189-192. DOI: 10.3969/j.issn.1007-5410.2023.02.019.
    [24] 邢宝迪, 吕文山, 王颜刚, 等. 血清镁与胰岛素抵抗的关系及钠-葡萄糖协同转运蛋白2抑制剂的升镁作用[J]. 中华糖尿病杂志, 2020, 12(7): 543-546. DOI: 10.3760/cma.j.cn115791-20200118-00069.

    XING BD, LYU WS, WANG YG, et al. The relationship between serum magnesium and insulin resistance and the effect of sodium-glucose co-transporter 2 inhibitor on magnesium elevation[J]. Chin J Diabetes, 2020, 12(7): 543-546. DOI: 10.3760/cma.j.cn115791-20200118-00069.
    [25] GARNIER AS, DUVEAU A, PLANCHAIS M, et al. Serum magnesium after kidney transplantation: a systematic review[J]. Nutrients, 2018, 10(6): 729.DOI: 10.3390/nu10060729.

    GARNIER AS, DUVEAU A, PLANCHAIS M, et al. Serum magnesium after kidney transplantation: a systematic review[J]. Nutrients, 2018, 10(6): 729.DOI: 10.3390/nu10060729.
    [26] STEFANELLI LF, ALESSI M, BERTOLDI G, et al. Calcineurin-inhibitor-induced hypomagnesemia in kidney transplant patients: a monocentric comparative study between sucrosomial magnesium and magnesium pidolate supplementation[J]. J Clin Med, 2023, 12(3): 752. DOI: 10.3390/jcm12030752.
    [27] VIOLA P, MARCELLI V, SCULCO D, et al. Vestibular disorders after kidney transplantation: focus on the pathophysiological mechanisms underlying the vertical nystagmus associated with tacrolimus-related hypomagnesamia[J]. Int J Environ Res Public Health, 2022, 19(4): 2260. DOI: 10.3390/ijerph19042260.
    [28] PIETROPAOLO G, PUGLIESE D, ARMUZZI A, et al. Magnesium absorption in intestinal cells: evidence of cross-talk between EGF and TRPM6 and novel implications for cetuximab therapy[J]. Nutrients, 2020, 12(11): 3277. DOI: 10.3390/nu12113277.
    [29] MARNEROS AG. Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron[J]. Cell Rep, 2021, 34(2): 108616. DOI: 10.1016/j.celrep.2020.108616.
    [30] DA SILVA CA, DE BRAGANÇA AC, SHIMIZU MH, et al. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression[J]. Am J Physiol Renal Physiol, 2009, 297(4): F916-F922. DOI: 10.1152/ajprenal.90256.2008.
    [31] ANDOH TF, BURDMANN EA, FRANSECHINI N, et al. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506[J]. Kidney Int, 1996, 50(4): 1110-1117. DOI: 10.1038/ki.1996.417.
    [32] 崔维恒. 长期使用质子泵抑制剂所致不良反应的研究进展[J]. 河南大学学报(医学版), 2023, 42(3): 163-166,176. DOI: 10.15991/j.cnki.41-1361/r.2023.03.008.

    CUI WH. Research progress of adverse reactions caused by long-term use of proton pump inhibitors[J]. J Henan Univ (Med Sci), 2023, 42(3): 163-166,176. DOI: 10.15991/j.cnki.41-1361/r.2023.03.008.
    [33] AYDIN YOLDEMIR Ş, ZEREN OZTURK G, AKARSU M, et al. Is there a correlation between hypomagnesemia linked to long-term proton pump inhibitor use and the active agent?[J]. Wien Klin Wochenschr, 2022, 134(3/4): 104-109. DOI: 10.1007/s00508-021-01834-x.
    [34] SEAH S, TAN YK, TEH K, et al. Proton-pump inhibitor use amongst patients with severe hypomagnesemia[J]. Front Pharmacol, 2023, 14: 1092476. DOI: 10.3389/fphar.2023.1092476.
    [35] GOMMERS LMM, HOENDEROP JGJ, DE BAAIJ JHF. Mechanisms of proton pump inhibitor-induced hypomagnesemia[J]. Acta Physiol (Oxf), 2022, 235(4): e13846. DOI: 10.1111/apha.13846.
    [36] DOUWES RM, GOMES-NETO AW, SCHUTTEN JC, et al. Proton-pump inhibitors and hypomagnesaemia in kidney transplant recipients[J]. J Clin Med, 2019, 8(12): 2162. DOI: 10.3390/jcm8122162.
    [37] 郭飘飘, 崔越, 张汝建, 等. 质子泵抑制剂与低镁血症关系的Meta分析[J]. 山东第一医科大学(山东省医学科学院)学报, 2022, 43(9): 674-681. DOI: 10.3969/j.issn.2097-0005.2022.09.003.

    GUO PP, CUI Y, ZHANG RJ, et al. Proton pump inhibitors and hypomagnesemia: a meta-analysis[J]. J ShanDong First Med Univ(ShanDong Acad Med Sci), 2022, 43(9): 674-681. DOI: 10.3969/j.issn.2097-0005.2022.09.003.
    [38] LATEEF JUNAID MA, FARAZ A, VASEEM M, et al. Effect of proton pump inhibitors on magnesium levels in type II diabetic patients: a single centre study from Saudi Arabia[J]. Eur Rev Med Pharmacol Sci, 2023, 27(3): 1077-1082. DOI: 10.26355/eurrev_202302_31204.
    [39] VAN LAECKE S, VAN BIESEN W. Hypomagnesaemia in kidney transplantation[J]. Transplant Rev (Orlando), 2015, 29(3): 154-160. DOI: 10.1016/j.trre.2015.05.002.
    [40] PANTHOFER AM, LYU B, ASTOR BC, et al. Post-kidney transplant serum magnesium exhibits a U-shaped association with subsequent mortality: an observational cohort study[J]. Transpl Int, 2021, 34(10): 1853-1861. DOI: 10.1111/tri.13932.
  • 加载中
图(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 网络出版日期:  2024-04-29
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回