留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾移植受者代谢标志物与血脂水平的相关性研究

徐媛, 侯霜, 陈乾, 等. 肾移植受者代谢标志物与血脂水平的相关性研究[J]. 器官移植, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014
引用本文: 徐媛, 侯霜, 陈乾, 等. 肾移植受者代谢标志物与血脂水平的相关性研究[J]. 器官移植, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014
Xu Yuan, Hou Shuang, Chen Qian, et al. Correlation between metabolic markers and blood lipid levels in kidney transplant recipients[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014
Citation: Xu Yuan, Hou Shuang, Chen Qian, et al. Correlation between metabolic markers and blood lipid levels in kidney transplant recipients[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014

肾移植受者代谢标志物与血脂水平的相关性研究

doi: 10.3969/j.issn.1674-7445.2024014
基金项目: 贵州省基础研究计划(自然科学类)项目(黔科合基础-ZK[2023]376);贵州省卫生健康委科学技术基金项目(gzwkj2023-164)
详细信息
    通讯作者:

    徐媛(ORCID 0000-0001-9027-6286),硕士,副主任医师,研究方向为器官移植,Email:xuyuan@gmc.edu.cn;李海洋(ORCID 0000-0003-0015-5750),博士,主任医师,研究方向肝胆外科、器官移植,Email:xuyuan@gmc.edu.cn

  • 中图分类号: R617, R589.2

Correlation between metabolic markers and blood lipid levels in kidney transplant recipients

More Information
  • 摘要:   目的   分析肾移植受者血脂代谢、高脂血症、他克莫司药物代谢中共表达的基因及其与血脂水平的相关性。  方法   从比较毒理基因组学数据库(CTD)中筛选出共表达的基因。收集25例肾移植受者的一般资料,检测ATP结合盒亚家族A成员1(ABCA1)、过氧化物酶体增殖物激活受体γ(PPAR-γ)、糖基磷脂酰肌醇锚定高密度脂蛋白结合蛋白1(GPIHBP1)的表达情况。对肾移植受者进行跟踪随访,收集术后1、3、6、12个月空腹血糖、糖化血红蛋白、甘油三酯、总蛋白、白蛋白、球蛋白、胆固醇、高密度脂蛋白、低密度脂蛋白、他克莫司血药浓度,并分析受者高脂血症的发生情况。分析ABCA1、GPIHBP1、PPAR-γ与临床指标的相关性,及其与相关指标对肾移植术后高脂血症的诊断效能。  结果   共筛选出3个共表基因ABCA1、PPAR-γ、GPIHBP1。ABCA1与术后6个月胆固醇、术后3个月他克莫司血药浓度成正相关,与术后3个月空腹血糖呈负相关(均为P<0.05);GPIHBP1与术前胆固醇、术前甘油三酯呈负相关,与术后3个月他克莫司血药浓度呈正相关(均为P<0.05)。PPAR-γ与术前球蛋白、术前低密度脂蛋白呈负相关(均为P<0.05)。ABCA1、GPIHBP1、PPAR-γ联合术前球蛋白及术后1、6个月血糖水平诊断肾移植术后高甘油三酯血症的效果较好(AUC=0.900)。ABCA1、GPIHBP1、PPAR-γ联合术后1、6个月他克莫司血药浓度及术后6个月血糖水平诊断肾移植术后高胆固醇血症的效果较好(AUC=0.931)。  结论   ABCA1、GPIHBP1、PPAR-γ与肾移植术后血脂、他克莫司血药浓度等指标存在不同程度的相关关系,但用于预测肾移植术后高脂血症尚无确切依据。提升机体免疫力、规范的血糖管理可能是控制高脂血症的有益因素。

     

  • FIG. 3257.  FIG. 3257.

    FIG. 3257..  FIG. 3257.

    图  1  DEG的筛选

    Figure  1.  Screening of DEG

    图  2  ABCA1与临床指标之间的相关性分析

    注:A图为ABCA1与术后6个月胆固醇的相关性分析;B图为ABCA1与术后3个月他克莫司血药浓度的相关性分析;C图为ABCA1与术后3个月空腹血糖的相关性分析。

    Figure  2.  Correlation analysis between ABCA1 and clinical indexes

    图  3  GPIHBP1与临床指标之间的相关性分析

    注:A图为GPIHBP1与术前胆固醇的相关性分析;B图为GPIHBP1与术前甘油三酯的相关性分析;C图为GPIHBP1与术后3个月他克莫司血药浓度的相关性分析。

    Figure  3.  Correlation analysis between GPIHBP1 and clinical indexes

    图  4  PPAR-γ与临床指标的相关性分析

    注:A图为PPAR-γ与术前球蛋白的相关性分析;B图为PPAR-γ与术前低密度脂蛋白的相关性分析。

    Figure  4.  Correlation analysis between PPAR-γ and clinical indexes

    图  5  各指标对肾移植术后高甘油三酯血症的诊断效能

    注:A图为术前白蛋白、球蛋白、总蛋白、糖化血红蛋白诊断肾移植术后高甘油三酯血症的ROC曲线;B图为术前糖化血红蛋白、空腹血糖,术后1、3、6、12个月空腹血糖诊断肾移植术后高甘油三酯血症的ROC曲线;C图为术后首次,术后1、3、6、12个月他克莫司血药浓度诊断肾移植术后高甘油三酯血症的ROC曲线;D图为ABCA1、GPIHBP1、PPAR-γ诊断肾移植术后高甘油三酯血症的ROC曲线;E图为ABCA1、GPIHBP1、PPAR-γ联合诊断肾移植术后高甘油三酯血症的ROC曲线;F图为ABCA1、GPIHBP1、PPAR-γ联合术后1、6个月空腹血糖及术前球蛋白诊断肾移植术后高甘油三酯血症的ROC曲线。

    Figure  5.  Diagnostic efficacy of indicators for hypertriglyceridemia after kidney transplantation

    图  6  各指标对肾移植术后高胆固醇血症的诊断效能

    注:A图为术前白蛋白、球蛋白、总蛋白、糖化血红蛋白诊断肾移植术后高胆固醇血症的ROC曲线;B图为术前糖化血红蛋白、空腹血糖,术后1、3、6、12个月空腹血糖诊断肾移植术后高胆固醇血症的ROC曲线;C图为术后首次,术后1、3、6、12个月他克莫司血药浓度诊断肾移植术后高胆固醇血症的ROC曲线;D图为ABCA1、GPIHBP1、PPAR-γ诊断肾移植术后高胆固醇血症的ROC曲线;E图为ABCA1、GPIHBP1、PPAR-γ联合诊断肾移植术后高胆固醇血症的ROC曲线;F图为ABCA1、GPIHBP1、PPAR-γ联合术后1、6个月他克莫司血药浓度及术后6个月空腹血糖水平诊断肾移植术后高胆固醇血症的ROC曲线。

    Figure  6.  Diagnostic efficacy of indicators for hypercholesterolemia after kidney transplantation

  • [1] LIBERZON A, BIRGER C, THORVALDSDÓTTIR H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. DOI: 10.1016/j.cels.2015.12.004.
    [2] 高甘油三酯血症临床管理多学科专家共识工作组. 高甘油三酯血症临床管理多学科专家共识[J]. 中国循环杂志, 2023, 38(6): 621-633. DOI: 10.3969/j.issn.1000-3614.2023.06.003.

    The Task Force for Multidisciplinary Expert Consensus on the Clinical Management of Hypertriglyceridemia. Multidisciplinary expert consensus on the clinical management of hypertriglyceridemia[J]. Chin Circ J, 2023, 38(6): 621-633. DOI: 10.3969/j.issn.1000-3614.2023.06.003.
    [3] 王小惠, 白新秀, 朱姗姗, 等. 副干酪乳杆菌抑制动脉粥样硬化进展的作用及其机制[J]. 中山大学学报(医学科学版), 2022, 43(1): 51-60. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0107.

    WANG XH, BAI XX, ZHU SS, et al. Effects and mechanisms of lactobacillus paracasei on the prevention of atherosclerosis[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 51-60. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0107.
    [4] AGGARWAL R, YEH RW, JOYNT MADDOX KE, et al. Cardiovascular risk factor prevalence, treatment, and control in US adults aged 20 to 44 years, 2009 to March 2020[J]. JAMA, 2023, 329(11): 899-909. DOI: 10.1001/jama.2023.2307.
    [5] YU G. Gene ontology semantic similarity analysis using GOSemSim[J]. Methods Mol Biol, 2020, 2117: 207-215. DOI: 10.1007/978-1-0716-0301-7_11.
    [6] CHEN L, PENG Y, JI C, et al. Network pharmacology-based analysis of the role of tacrolimus in liver transplantation[J]. Saudi J Biol Sci, 2021, 28(3): 1569-1575. DOI: 10.1016/j.sjbs.2020.12.050.
    [7] RITCHIE ME, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. DOI: 10.1093/nar/gkv007.
    [8] AGHASIZADEH M, ZARE-FEYZABADI R, KAZEMI T, et al. A haplotype of the ANGPTL3 gene is associated with CVD risk, diabetes mellitus, hypertension, obesity, metabolic syndrome, and dyslipidemia[J]. Gene, 2021, 782: 145525. DOI: 10.1016/j.gene.2021.145525.
    [9] 文宁, 梁瑜祯. 实体器官移植的免疫抑制治疗与移植后糖尿病发生风险的关系[J]. 中华糖尿病杂志, 2023, 15(9): 895-900. DOI: 10.3760/cma.j.cn115791-20230616-00258.

    WEN N, LIANG YZ. Immunosuppressive therapy in solid organ transplantation and post-transplantation diabetes mellitus[J]. Chin J Diabetes, 2023, 15(9): 895-900. DOI: 10.3760/cma.j.cn115791-20230616-00258.
    [10] LI Z, XIANG J, MEI S, et al. The effect of PINK1/Parkin pathway on glucose homeostasis imbalance induced by tacrolimus in mouse livers[J]. Heliyon, 2023, 9(4): e15536. DOI: 10.1016/j.heliyon.2023.e15536.
    [11] 沈国平, 程梁, 蒋振伟, 等. 他克莫司血药浓度及相关基因多态性对肾移植后糖尿病发生的影响[J]. 医药导报, 2022, 41(10): 1503-1508. DOI: 10.3870/j.issn.1004-0781.2022.10.021.

    SHEN GP, CHENG L, JIANG ZW, et al. Effects of tacrolimus blood drug concentration and related gene polymorphisms on the development of diabetes after renal transplantation[J]. Herald Med, 2022, 41(10): 1503-1508. DOI: 10.3870/j.issn.1004-0781.2022.10.021.
    [12] 徐媛, 杨波, 陈成鑫, 等. 肾移植受者新发高甘油三酯血症的危险因素: 单中心分析[J]. 器官移植, 2023, 14(5): 691-699. DOI: 10.3969/j.issn.1674-7445.2023055.

    XU Y, YANG B, CHEN CX, et al. Risk factors of new-onset hypertriglyceridemia in kidney transplant recipients: a single-center analysis[J]. Organ Transplant, 2023, 14(5): 691-699. DOI: 10.3969/j.issn.1674-7445.2023055.
    [13] 刘晓红, 李玲, 齐振华, 等. 实体器官移植术后代谢综合征及其危险因素[J]. 中华器官移植杂志, 2019, 40(5): 313-316. DOI: 10.3760/cma.j.issn.0254-1785.2019.05.014.

    LIU XH, LI L, QI ZH, et al. Metabolic syndrome and its risk factors after solid organ transplantation[J]. Chin J Organ Transplant, 2019, 40(5): 313-316. DOI: 10.3760/cma.j.issn.0254-1785.2019.05.014.
    [14] SHAKED A, LOZA BL, VAN LOON E, et al. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes[J]. Nat Med, 2022, 28(5): 999-1005. DOI: 10.1038/s41591-022-01758-7.
    [15] TUMAYHI M, BANJI D, KHARDALI I, et al. Amphetamine-related fatalities and altered brain chemicals: a preliminary investigation using the Comparative Toxicogenomic Database[J]. Molecules, 2023, 28(12): 4787. DOI: 10.3390/molecules28124787.
    [16] 中国血脂管理指南修订联合专家委员会. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271. DOI: 10.3969/j.issn.1000-3614.2023.03.001.

    Joint Committee on the Chinese Guidelines for Lipid Management. Chinese guidelines for lipid management (2023)[J]. Chin Circ J, 2023, 38(3): 237-271. DOI: 10.3969/j.issn.1000-3614.2023.03.001.
    [17] SANTOVITO D, MARCANTONIO P, MASTROIACOVO D, et al. High dose rosuvastatin increases ABCA1 transporter in human atherosclerotic plaques in a cholesterol-independent fashion[J]. Int J Cardiol, 2020, 299: 249-253. DOI: 10.1016/j.ijcard.2019.07.094.
    [18] 郑洁琼, 王华文, 张立, 等. 健脾祛痰方通过调节PPARγ/LXRα/ABCA1通路干预血脂异常的效应机制[J]. 中华中医药学刊, 2023, 41(4): 191-195,36. DOI: 10.13193/j.issn.1673-7717.2023.04.039.

    ZHENG JQ, WANG HW, ZHANG L, et al. Mechanism of Jianpi Qutan recipe on dyslipidemia through PPARγ/LXRα/ABCA1 pathway[J]. Chin Arch Tradit Chin Med, 2023, 41(4): 191-195,36. DOI: 10.13193/j.issn.1673-7717.2023.04.039.
    [19] HASAN MM, HOSEN MB, RAHMAN MM, et al. Association of ATP binding cassette transporter 1 (ABCA 1) gene polymorphism with type 2 diabetes mellitus (T2DM) in Bangladeshi population[J]. Gene, 2019, 688: 151-154. DOI: 10.1016/j.gene.2018.12.003.
    [20] JACOBO-ALBAVERA L, DOMÍNGUEZ-PÉREZ M, MEDINA-LEYTE DJ, et al. The role of the ATP-binding cassette A1 (ABCA1) in human disease[J]. Int J Mol Sci, 2021, 22(4): 1593. DOI: 10.3390/ijms22041593.
    [21] YOON HY, LEE MH, SONG Y, et al. ABCA1 69C>T polymorphism and the risk of type 2 diabetes mellitus: a systematic review and updated meta-analysis[J]. Front Endocrinol (Lausanne), 2021, 12: 639524. DOI: 10.3389/fendo.2021.639524.
    [22] SHIM SY, YOON HY, YEE J, et al. Association between ABCA1 gene polymorphisms and plasma lipid concentration: a systematic review and meta-analysis[J]. J Pers Med, 2021, 11(9): 883. DOI: 10.3390/jpm11090883.
    [23] D'ELIA JA, WEINRAUCH LA. Hyperglycemia and hyperlipidemia with kidney or liver transplantation: a review[J]. Biology (Basel), 2023, 12(9): 1185. DOI: 10.3390/biology12091185.
    [24] GOKTEPE B, CELTIK A, KIVRATMA G, et al. Is serum magnesium level associated with serum lipid levels in kidney transplant recipients?[J]. Transplant Proc, 2023, 55(5): 1147-1151. DOI: 10.1016/j.transproceed.2023.01.041.
    [25] COLLADANT M, CHABANNES M, CREPIN T, et al. Triglyceride-glucose index and cardiovascular events in kidney transplant recipients[J]. Kidney Int Rep, 2023, 8(11): 2307-2314. DOI: 10.1016/j.ekir.2023.08.021.
    [26] ŞIRIN ME, YILMAZ M, POLAT ME, et al. Is there any association between triglyceride-glucose index and graft function in kidney transplant recipients?[J]. Transplant Proc, 2023, 55(2): 346-349. DOI: 10.1016/j.transproceed.2023.01.016.
    [27] SHI HB, ZHAO YY, LI Y, et al. Values of donor serum lipids and calcium in predicting graft function after kidney transplantation: a retrospective study[J]. Curr Med Sci, 2023, 43(3): 514-519. DOI: 10.1007/s11596-023-2729-2.
    [28] HASSOUNEH R, FLYNN S, SHEN S, et al. Impact of liver transplantation on adipose tissue compartments and its association with metabolic sequela[J]. Transplantation, 2024, 108(1): 235-241. DOI: 10.1097/TP.000000000 0004704.
    [29] KARABULUT D, KARABULUT U, KALYONCUOĞLU M, et al. Predictive value of triglyceride/glucose index for cardiac outcomes in non-diabetic renal transplant recipients[J]. Acta Cardiol, 2024, 79(3):319-326. DOI: 10.1080/00015385.2023.2257983.
    [30] NAZOIRI C, LIABEUF S, BRAZIER F, et al. Statin therapy and the incidence of atherosclerotic cardiovascular events after kidney transplantation[J]. Nephrol Dial Transplant, 2024,39(5):818-829. DOI: 10.1093/ndt/gfad217.
    [31] KUROOKA N, EGUCHI J, WADA J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes[J]. J Diabetes Investig, 2023, 14(10): 1148-1156. DOI: 10.1111/jdi.14056.
    [32] STRØM TB, TVEITA AA, BOGSRUD MP, et al. Molecular genetic testing and measurement of levels of GPIHBP1 autoantibodies in patients with severe hypertriglyceridemia: the importance of identifying the underlying cause of hypertriglyceridemia[J]. J Clin Lipidol, 2024,18(1):e80-e89. DOI: 10.1016/j.jacl.2023.11.002.
    [33] PLENGPANICH W, YOUNG SG, KHOVIDHUNKIT W, et al. Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain[J]. J Biol Chem, 2014, 289(28): 19491-19499. DOI: 10.1074/jbc.M114.558528.
    [34] IDEISHI A, SUEMATSU Y, TASHIRO K, et al. Changes in serum levels of angiopoietin-like protein-8 and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 after ezetimibe therapy in patients with dyslipidemia[J]. Clin Chim Acta, 2020, 510: 675-680. DOI: 10.1016/j.cca.2020.08.030.
    [35] LI X, BILALI A, QIAO R, et al. Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury[J]. Mol Med Rep, 2018, 17(5): 6759-6767. DOI: 10.3892/mmr.2018.8649.
    [36] ZHANG L, HE Y, WU C, et al. Altered expression of glucose metabolism associated genes in a tacrolimus-induced post-transplantation diabetes mellitus in rat model[J]. Int J Mol Med, 2019, 44(4): 1495-1504. DOI: 10.3892/ijmm.2019.4313.
    [37] STECHSCHULTE LA, QIU B, WARRIER M, et al. FKBP51 null mice are resistant to diet-induced obesity and the PPARγ agonist rosiglitazone[J]. Endocrinology, 2016, 157(10): 3888-3900. DOI: 10.1210/en.2015-1996.
    [38] BARGE S, DEKA B, KASHYAP B, et al. Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade[J]. Phytother Res, 2021, 35(12): 6990-7003. DOI: 10.1002/ptr.7320.
  • 加载中
图(7)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  51
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-10
  • 网络出版日期:  2024-04-28
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回