留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞在1型糖尿病胰岛移植中的应用进展

朱淑芳, 牟丽莎. 间充质干细胞在1型糖尿病胰岛移植中的应用进展[J]. 器官移植, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194
引用本文: 朱淑芳, 牟丽莎. 间充质干细胞在1型糖尿病胰岛移植中的应用进展[J]. 器官移植, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194
Zhu Shufang, Mou Lisha. Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194
Citation: Zhu Shufang, Mou Lisha. Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194

间充质干细胞在1型糖尿病胰岛移植中的应用进展

doi: 10.3969/j.issn.1674-7445.2023194
基金项目: 国家重点研发计划(2017YFC1103704);深圳市科技计划(GJHZ20200731095207021)
详细信息
    作者简介:
    通讯作者:

    牟丽莎(ORCID 0000-0001-6232-8341),Email:lishamou@gmail.com

  • 中图分类号: R617, R587.1

Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus

More Information
  • 摘要: 胰岛移植被认为是治疗1型糖尿病的有效方法之一,但其疗效受到多种因素限制。胰岛在分离、培养和移植过程中的缺氧、应激及排斥反应,都会影响胰岛移植的结局。间充质干细胞(MSC)因其抗炎、促进血管生成和调节免疫代谢等生物特性,一直备受研究者关注。此外,MSC的衍生物如外泌体在调节缺氧诱导的氧化应激、促进机体血管形成和调节免疫方面也具有重要作用。基于MSC的胰岛移植可能是1型糖尿病的有效治疗方法。因此,本文就MSC在胰岛移植前后发挥的潜在作用进行综述,并探讨其临床应用及局限性,以期为今后胰岛移植治疗1型糖尿病的相关研究提供新的思路和见解。

     

  • FIG. 2991.  FIG. 2991.

    FIG. 2991..  FIG. 2991.

    表  1  胰岛与MSC联合移植的途径及功能

    Table  1.   Pathways and functions of combined islet and MSC transplantation

    移植途径 侵入性 感染率 机制 功能
    胰腺内途径 改善直接接触和共同移植 保护胰岛
    静脉途径 较高 间接接触,体液因子 保护胰岛
    皮下途径 较低 间接接触,体液因子 通过包裹以防止排斥反应
    肾包膜途径 改变细胞因子产生模式 创造免疫生态位
    下载: 导出CSV
  • [1] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
    [2] SYED FZ. Type 1 diabetes mellitus[J]. Ann Intern Med, 2022, 175(3): ITC33-ITC48. DOI: 10.7326/AITC202203150.
    [3] MARKMANN JF, RICKELS MR, EGGERMAN TL, et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes[J]. Am J Transplant, 2021, 21(4): 1477-1492. DOI: 10.1111/ajt.16174.
    [4] 罗说明, 周智广. 1型糖尿病治疗新技术的现状与未来[J]. 中国医师杂志, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.

    LUO SM, ZHOU ZG. Current status and future of new technologies in the treatment of type 1 diabetes[J]. J Chin Physician, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.
    [5] MARFIL-GARZA BA, SHAPIRO AMJ, KIN T. Clinical islet transplantation: current progress and new frontiers[J]. J Hepatobiliary Pancreat Sci, 2021, 28(3): 243-254. DOI: 10.1002/jhbp.891.
    [6] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential[J]. Trends Pharmacol Sci, 2020, 41(9): 653-664. DOI: 10.1016/j.tips.2020.06.009.
    [7] 张岐剑, 徐希明. 外胚层间充质干细胞的获取及应用[J]. 中国组织工程研究, 2023, 27(6): 928-934. DOI: 10.12307/j.issn.2095-4344.2023.6.xdkf202306020.

    ZHANG QJ, XU XM. Acquisition and application of ectodermal mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2023, 27(6): 928-934. DOI: 10.12307/j.issn.2095-4344.2023.6.xdkf202306020.
    [8] LIN AD, TUNG MC, LU CH. The hernia sac-a suitable source for obtaining mesenchymal stem cells[J]. Surg Open Sci, 2021, 6: 40-44. DOI: 10.1016/j.sopen.2021.08.002.
    [9] SHRESTHA M, NGUYEN TT, PARK J, et al. Immunomodulation effect of mesenchymal stem cells in islet transplantation[J]. Biomed Pharmacother, 2021, 142: 112042. DOI: 10.1016/j.biopha.2021.112042.
    [10] MATSUZAKA Y, YASHIRO R. Therapeutic strategy of mesenchymal-stem-cell-derived extracellular vesicles as regenerative medicine[J]. Int J Mol Sci, 2022, 23(12): 6480. DOI: 10.3390/ijms23126480.
    [11] THALAKIRIYAWA DS, JAYASOORIYA PR, DISSANAYAKA WL. Regenerative potential of mesenchymal stem cell-derived extracellular vesicles[J]. Curr Mol Med, 2022, 22(2): 98-119. DOI: 10.2174/1566524021666210211114453.
    [12] LACHAUD CC, COBO-VUILLEUMIER N, FUENTE-MARTIN E, et al. Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses[J]. Front Cell Dev Biol, 2023, 11: 1089817. DOI: 10.3389/fcell.2023.1089817.
    [13] YOUSEF HN, SAKR SM, SABRY SA. Mesenchymal stem cells ameliorate hyperglycemia in type I diabetic developing male rats[J]. Stem Cells Int, 2022: 7556278. DOI: 10.1155/2022/7556278.
    [14] EL-SAWAH SG, RASHWAN HM, ALTHOBAITI F, et al. AD-MSCs and BM-MSCs ameliorating effects on the metabolic and hepato-renal abnormalities in type 1 diabetic rats[J]. Saudi J Biol Sci, 2022, 29(2): 1053-1060. DOI: 10.1016/j.sjbs.2021.09.067.
    [15] HUBBER EL, RACKHAM CL, JONES PM. Protecting islet functional viability using mesenchymal stromal cells[J]. Stem Cells Transl Med, 2021, 10(5): 674-680. DOI: 10.1002/sctm.20-0466.
    [16] RACKHAM CL, HUBBER EL, CZAJKA A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem Cells, 2020, 38(4): 574-584. DOI: 10.1002/stem.3134.
    [17] LI X, LANG H, LI B, et al. Change in viability and function of pancreatic islets after coculture with mesenchymal stromal cells: a systemic review and meta-analysis[J]. J Diabetes Res, 2020:5860417. DOI: 10.1155/2020/5860417.
    [18] BRANDHORST H, BRANDHORST D, ABRAHAM A, et al. Proteomic profiling reveals the ambivalent character of the mesenchymal stem cell secretome: assessing the effect of preconditioned media on isolated human islets[J]. Cell Transplant, 2020, 29: 963689720952332. DOI: 10.1177/0963689720952332.
    [19] KUPPAN P, SEEBERGER K, KELLY S, et al. Co-transplantation of human adipose-derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function[J]. Xenotransplantation, 2020, 27(4): e12581. DOI: 10.1111/xen.12581.
    [20] LI SW, CAI Y, MAO XL, et al. The immunomodulatory properties of mesenchymal stem cells play a critical role in inducing immune tolerance after liver transplantation[J]. Stem Cells Int, 2021: 6930263. DOI: 10.1155/2021/6930263.
    [21] CORRADI-PERINI C, SANTOS TM, CAMARA NOS, et al. Co-transplantation of xenogeneic bone marrow-derived mesenchymal stem cells alleviates rejection of pancreatic islets in non-obese diabetic mice[J]. Transplant Proc, 2017, 49(4): 902-905. DOI: 10.1016/j.transproceed.2017.01.064.
    [22] CHEN J, CHEN J, CHENG Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1): 97. DOI: 10.1186/s13287-020-01610-0.
    [23] TAN Y, NIE W, CHEN C, et al. Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets[J]. Exp Biol Med (Maywood), 2019, 244(9): 781-788. DOI: 10.1177/1535370219844472.
    [24] XU Y, TAN M, MA X, et al. Human mesenchymal stem cells-derived conditioned medium inhibits hypoxia-induced death of neonatal porcine islets by inducing autophagy[J]. Xenotransplantation, 2020, 27(1): e12556. DOI: 10.1111/xen.12556.
    [25] YU S, LU J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants[J]. Transpl Immunol, 2023, 81: 101939. DOI: 10.1016/j.trim.2023.101939.
    [26] YAN LL, YE LP, CHEN YH, et al. The influence of microenvironment on survival of intraportal transplanted islets[J]. Front Immunol, 2022, 13: 849580. DOI: 10.3389/fimmu.2022.849580.
    [27] CAO XK, LI R, SUN W, et al. Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis[J]. Biomed Pharmacother, 2016, 78: 156-164. DOI: 10.1016/j.biopha.2016.01.007.
    [28] LING Q, SHEN L, ZHANG W, et al. Increased plasmablasts enhance T cell-mediated beta cell destruction and promote the development of type 1 diabetes[J]. Mol Med, 2022, 28(1): 18. DOI: 10.1186/s10020-022-00447-y.
    [29] CONTRERAS-KALLENS P, TERRAZA C, OYARCE K, et al. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance[J]. Ann N Y Acad Sci, 2018, 1417(1): 35-56. DOI: 10.1111/nyas.13364.
    [30] ZHANG W, LING Q, WANG B, et al. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes[J]. Stem Cell Res Ther, 2022, 13(1): 406. DOI: 10.1186/s13287-022-02974-1.
    [31] PIEKARSKA K, URBAN-WÓJCIUK Z, KURKOWIAK M, et al. Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity[J]. Nat Commun, 2022, 13(1): 856. DOI: 10.1038/s41467-022-28338-0.
    [32] LI XY, WU SY, LEUNG PS. Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters[J]. Int J Mol Sci, 2019, 20(17): 4083. DOI: 10.3390/ijms20174083.
    [33] REN G, REZAEE M, RAZAVI M, et al. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties[J]. Cell Tissue Res, 2019, 376(3): 353-364. DOI: 10.1007/s00441-019-02997-w.
    [34] BARONE L, PALANO MT, GALLAZZI M, et al. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis[J]. Cell Death Discov, 2023, 9(1): 174. DOI: 10.1038/s41420-023-01464-4.
    [35] DUMAN BO, SARIBOYACI AE, KARAOZ E. Bio-engineering of 3-D cell sheets for diabetic rats: Interaction between mesenchymal stem cells and beta cells in functional islet regeneration system[J]. Tissue Cell, 2022, 79: 101919. DOI: 10.1016/j.tice.2022.101919.
    [36] LUO Y, LIANG F, WAN X, et al. Hyaluronic acid facilitates angiogenesis of endothelial colony forming cell combining with mesenchymal stem cell via CD44/ microRNA-139-5p pathway[J]. Front Bioeng Biotechnol, 2022, 10: 794037. DOI: 10.3389/fbioe.2022.794037.
    [37] ELSHEMY MM, ASEM M, ALLEMAILEM KS, et al. Antioxidative capacity of liver- and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats[J]. Oxid Med Cell Longev, 2021: 8833467. DOI: 10.1155/2021/8833467.
    [38] WANG Y, TIAN M, WANG F, et al. Understanding the immunological mechanisms of mesenchymal stem cells in allogeneic transplantation: from the aspect of major histocompatibility complex class I[J]. Stem Cells Dev, 2019, 28(17): 1141-1150. DOI: 10.1089/scd.2018.0256.
    [39] BOWLES AC, ISHAHAK MM, GLOVER SJ, et al. Evaluating vascularization of heterotopic islet constructs for type 1 diabetes using an in vitro platform[J]. Integr Biol (Camb), 2019, 11(8): 331-341. DOI: 10.1093/intbio/zyz027.
    [40] KHATRI R, MAZUREK S, PETRY SF, et al. Mesenchymal stem cells promote pancreatic β-cell regeneration through downregulation of FoxO1 pathway[J]. Stem Cell Res Ther, 2020, 11(1): 497. DOI: 10.1186/s13287-020-02007-9.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  99
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-03
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回