留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调节性细胞过继回输在器官移植中的研究及应用进展

王若麟, 贾亚男, 朱继巧, 等. 调节性细胞过继回输在器官移植中的研究及应用进展[J]. 器官移植, 2023, 14(6): 892-897. doi: 10.3969/j.issn.1674-7445.2023103
引用本文: 王若麟, 贾亚男, 朱继巧, 等. 调节性细胞过继回输在器官移植中的研究及应用进展[J]. 器官移植, 2023, 14(6): 892-897. doi: 10.3969/j.issn.1674-7445.2023103
Wang Ruolin, Jia Ya’nan, Zhu Jiqiao, et al. Research and application progress in adoptive re-transfusion of regulatory cells in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 892-897. doi: 10.3969/j.issn.1674-7445.2023103
Citation: Wang Ruolin, Jia Ya’nan, Zhu Jiqiao, et al. Research and application progress in adoptive re-transfusion of regulatory cells in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 892-897. doi: 10.3969/j.issn.1674-7445.2023103

调节性细胞过继回输在器官移植中的研究及应用进展

doi: 10.3969/j.issn.1674-7445.2023103
基金项目: 北京市自然科学基金面上项目(7232068);北京市朝阳医院科技创新基金(21kcjj-4)
详细信息
    作者简介:
    通讯作者:

    李先亮(ORCID:0000-0003-1321-0499),博士,主任医师,研究方向为器官移植免疫,Email:lixianliangbjcy@126.com

  • 中图分类号: R617, R392.4

Research and application progress in adoptive re-transfusion of regulatory cells in organ transplantation

More Information
  • 摘要: 排斥反应和长期使用免疫抑制药所带来的不良反应严重影响器官移植受者的生存率和生活质量,诱导免疫耐受是提高器官移植受者生存率,改善生活质量的关键。近年来,调节性细胞过继回输治疗取得了巨大的进展。本文就调节性T细胞(Treg)、髓源性抑制细胞(MDSC)以及调节性B细胞(Breg)在动物实验及临床应用中的进展进行综述,并总结调节性细胞过继回输临床上所面临的主要问题、嵌合抗原受体Treg的应用情况及免疫评估的细胞治疗概念,以期加深广大研究者对调节性细胞治疗的理解,促进调节性细胞在器官移植免疫耐受中的应用,改善器官移植效果和受者生存质量。

     

  • [1] CVETKOVSKI F, HEXHAM JM, BERGLUND E. Strategies for liver transplantation tolerance[J]. Int J Mol Sci, 2021, 22(5): 2253. DOI: 10.3390/ijms22052253.
    [2] LI XL, MÉNORET S, BEZIE S, et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance[J]. J Immunol, 2010, 185(2): 823-833. DOI: 10.4049/jimmunol.1000120.
    [3] SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [4] SÁNCHEZ-FUEYO A, WHITEHOUSE G, GRAGEDA N, et al. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation[J]. Am J Transplant, 2020, 20(4): 1125-1136. DOI: 10.1111/ajt.15700.
    [5] HARDEN PN, GAME DS, SAWITZKI B, et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients[J]. Am J Transplant, 2021, 21(4): 1603-1611. DOI: 10.1111/ajt.16395.
    [6] ROEMHILD A, OTTO NM, MOLL G, et al. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial[J]. BMJ, 2020, 371: m3734. DOI: 10.1136/bmj.m3734.
    [7] SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. DOI: 10.4049/jimmunol.155.3.1151.
    [8] HO TH, PFEFFER K, WEISS GJ, et al. Identification of a CD4+ T cell line with Treg-like activity[J]. Hum Immunol, 2022, 83(4): 281-294. DOI: 10.1016/j.humimm.2022.01.008.
    [9] TODO S, YAMASHITA K, GOTO R, et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation[J]. Hepatology, 2016, 64(2): 632-643. DOI: 10.1002/hep.28459.
    [10] CHANDRAN S, TANG Q, SARWAL M, et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants[J]. Am J Transplant, 2017, 17(11): 2945-2954. DOI: 10.1111/ajt.14415.
    [11] FLIPPE L, BÉZIE S, ANEGON I, et al. Future prospects for CD8+ regulatory T cells in immune tolerance[J]. Immunol Rev, 2019, 292(1): 209-224. DOI: 10.1111/imr.12812.
    [12] 文李娜, 陈丽, 段瑞, 等. CD8+CD25+调节性T细胞在疾病中的研究进展[J]. 基础医学与临床, 2022, 42(12): 1939-1944. DOI: 10.16352/j.issn.1001-6325.2022.12.1939.

    WEN LN, CHEN L, DUAN R, et al. Progress of CD8+CD25+regulatory T cells in diseases[J]. Basic Clin Med, 2022, 42(12): 1939-1944. DOI: 10.16352/j.issn.1001-6325.2022.12.1939.
    [13] VEGLIA F, SANSEVIERO E, GABRILOVICH DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J]. Nat Rev Immunol, 2021, 21(8): 485-498. DOI: 10.1038/s41577-020-00490-y.
    [14] HEGDE S, LEADER AM, MERAD M. MDSC: markers, development, states, and unaddressed complexity[J]. Immunity, 2021, 54(5): 875-884. DOI: 10.1016/j.immuni.2021.04.004.
    [15] GROVER A, SANSEVIERO E, TIMOSENKO E, et al. Myeloid-derived suppressor cells: a propitious road to clinic[J]. Cancer Discov, 2021, 11(11): 2693-2706. DOI: 10.1158/2159-8290.CD-21-0764.
    [16] DRUJONT L, CARRETERO-IGLESIA L, BOUCHET-DELBOS L, et al. Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection[J]. PLoS One, 2014, 9(6): e100013. DOI: 10.1371/journal.pone.0100013.
    [17] REN Y, DONG X, ZHAO H, et al. Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis[J]. Am J Transplant, 2021, 21(2): 552-566. DOI: 10.1111/ajt.16291.
    [18] MARIGO I, BOSIO E, SOLITO S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor[J]. Immunity, 2010, 32(6): 790-802. DOI: 10.1016/j.immuni.2010.05.010.
    [19] DILEK N, POIRIER N, USAL C, et al. Control of transplant tolerance and intragraft regulatory T cell localization by myeloid-derived suppressor cells and CCL5[J]. J Immunol, 2012, 188(9): 4209-4216. DOI: 10.4049/jimmunol.1101512.
    [20] ADEEGBE D, SERAFINI P, BRONTE V, et al. In vivo induction of myeloid suppressor cells and CD4(+)Foxp3(+) T regulatory cells prolongs skin allograft survival in mice[J]. Cell Transplant, 2011, 20(6): 941-954. DOI: 10.3727/096368910X540621.
    [21] DUGAST AS, HAUDEBOURG T, COULON F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. J Immunol, 2008, 180(12): 7898-7906. DOI: 10.4049/jimmunol.180.12.7898.
    [22] EZZELARAB MB, PEREZ-GUTIERREZ A, HUMAR A, et al. Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation[J]. Transpl Immunol, 2019, 56: 101225. DOI: 10.1016/j.trim.2019.101225.
    [23] ZHANG J, HODGES A, CHEN SH, et al. Myeloid-derived suppressor cells as cellular immunotherapy in transplantation and autoimmune diseases[J]. Cell Immunol, 2021, 362: 104300. DOI: 10.1016/j.cellimm.2021.104300.
    [24] 蔡扬柏, 王毅. 调节性B细胞在移植免疫耐受中的研究进展[J]. 中国临床研究, 2022, 35(8): 1138-1141, 1146. DOI: 10.13429/j.cnki.cjcr.2022.08.023.

    CAI YB, WANG Y. Research progress of regulatory B cells in transplantation immune tolerance [J]. Chin J Clin Res, 2022, 35(8): 1138-1141, 1146. DOI: 10.13429/j.cnki.cjcr.2022.08.023.
    [25] CATALÁN D, MANSILLA MA, FERRIER A, et al. Immunosuppressive mechanisms of regulatory B cells[J]. Front Immunol, 2021, 12: 611795. DOI: 10.3389/fimmu.2021.611795.
    [26] DASGUPTA S, DASGUPTA S, BANDYOPADHYAY M. Regulatory B cells in infection, inflammation, and autoimmunity[J]. Cell Immunol, 2020, 352: 104076. DOI: 10.1016/j.cellimm.2020.104076.
    [27] GRAY M, MILES K, SALTER D, et al. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells[J]. Proc Natl Acad Sci U S A, 2007, 104(35): 14080-14085. DOI: 10.1073/pnas.0700326104.
    [28] CHERUKURI A, MOHIB K, ROTHSTEIN DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection[J]. Immunol Rev, 2021, 299(1): 31-44. DOI: 10.1111/imr.12933.
    [29] DING Q, YEUNG M, CAMIRAND G, et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice[J]. J Clin Invest, 2011, 121(9): 3645-3656. DOI: 10.1172/JCI46274.
    [30] MORATH C, SCHAIER M, IBRAHIM E, et al. Induction of long-lasting regulatory B lymphocytes by modified immune cells in kidney transplant recipients[J]. J Am Soc Nephrol, 2023, 34(1): 160-174. DOI: 10.1681/ASN.2022020210.
    [31] SALMINEN A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions[J]. J Mol Med (Berl), 2021, 99(11): 1553-1569. DOI: 10.1007/s00109-021-02123-w.
    [32] SALMINEN A. Clinical perspectives on the age-related increase of immunosuppressive activity[J]. J Mol Med (Berl), 2022, 100(5): 697-712. DOI: 10.1007/s00109-022-02193-4.
    [33] OROZCO G, GUPTA M, GEDALY R, et al. Untangling the knots of regulatory T cell therapy in solid organ transplantation[J]. Front Immunol, 2022, 13: 883855. DOI: 10.3389/fimmu.2022.883855.
    [34] ARJOMANDNEJAD M, KOPEC AL, KEELER AM. CAR-T regulatory (CAR-Treg) cells: engineering and applications[J]. Biomedicines, 2022, 10(2): 287. DOI: 10.3390/biomedicines10020287.
    [35] QU G, CHEN J, LI Y, et al. Current status and perspectives of regulatory T cell-based therapy[J]. J Genet Genomics, 2022, 49(7): 599-611. DOI: 10.1016/j.jgg.2022.05.005.
    [36] MACDONALD KG, HOEPPLI RE, HUANG Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor[J]. J Clin Invest, 2016, 126(4): 1413-1424. DOI: 10.1172/JCI82771.
    [37] BOARDMAN DA, PHILIPPEOS C, FRUHWIRTH GO, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection[J]. Am J Transplant, 2017, 17(4): 931-943. DOI: 10.1111/ajt.14185.
    [38] SICARD A, LAMARCHE C, SPECK M, et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients[J]. Am J Transplant, 2020, 20(6): 1562-1573. DOI: 10.1111/ajt.15787.
    [39] DAWSON NA, LAMARCHE C, HOEPPLI RE, et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells[J]. JCI Insight, 2019, 4(6): e123672. DOI: 10.1172/jci.insight.123672.
    [40] KALJANAC M, ABKEN H. Do Treg speed up with CARs? chimeric antigen receptor Treg engineered to induce transplant tolerance[J]. Transplantation, 2023, 107(1): 74-85. DOI: 10.1097/TP.0000000000004316.
    [41] BÉZIE S, CHARREAU B, VIMOND N, et al. Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice[J]. Blood Adv, 2019, 3(22): 3522-3538. DOI: 10.1182/bloodadvances.2019000411.
    [42] PROICS E, DAVID M, MOJIBIAN M, et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation[J]. Gene Ther, 2023, 30(3/4): 309-322. DOI: 10.1038/s41434-022-00358-x.
    [43] 李先亮, 贾亚男, 王若麟, 等. 创新免疫状态评估体系的建立及其在疾病诊疗中的应用[J]. 中国现代医学杂志, 2021, 31(16): 1-6. DOI: 10.3969/j.issn.1005-8982.2021.16.001.

    LI XL, JIA YN, WANG RL, et al. Research progress in novel approaches to immune status evaluation and their application in clinical practice[J]. China J Mod Med, 2021, 31(16): 1-6. DOI: 10.3969/j.issn.1005-8982.2021.16.001.
    [44] 贾亚男, 朱继巧, 李瀚, 等. 免疫状态量化评估体系指导肝移植术后个体化免疫抑制药管理的临床应用探讨[J]. 器官移植, 2022, 13(6): 803-809. DOI: 10.3969/j.issn.1674-7445.2022.06.017.

    JIA YN, ZHU JQ, LI H, et al. Clinical application investigation of quantitative evaluation system of immune status in guiding individualized management of immunosuppressants after liver transplantation[J]. Organ Transplant, 2022, 13(6): 803-809. DOI: 10.3969/j.issn.1674-7445.2022.06.017.
  • 加载中
图(1)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  217
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-22
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-11-09

目录

    /

    返回文章
    返回