留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞来源的细胞外囊泡对放射性肝损伤的保护作用及其机制研究

陈池, 萧家麒, 隋昕, 等. 间充质干细胞来源的细胞外囊泡对放射性肝损伤的保护作用及其机制研究[J]. 器官移植, 2023, 14(3): 411-419. doi: 10.3969/j.issn.1674-7445.2023.03.013
引用本文: 陈池, 萧家麒, 隋昕, 等. 间充质干细胞来源的细胞外囊泡对放射性肝损伤的保护作用及其机制研究[J]. 器官移植, 2023, 14(3): 411-419. doi: 10.3969/j.issn.1674-7445.2023.03.013
Chen Chi, Xiao Jiaqi, Sui Xin, et al. Protective effect and mechanism of mesenchymal stem cell-derived extracellular vesicle on radiation-induced liver injury[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 411-419. doi: 10.3969/j.issn.1674-7445.2023.03.013
Citation: Chen Chi, Xiao Jiaqi, Sui Xin, et al. Protective effect and mechanism of mesenchymal stem cell-derived extracellular vesicle on radiation-induced liver injury[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 411-419. doi: 10.3969/j.issn.1674-7445.2023.03.013

间充质干细胞来源的细胞外囊泡对放射性肝损伤的保护作用及其机制研究

doi: 10.3969/j.issn.1674-7445.2023.03.013
基金项目: 

国家自然科学基金 81970567

国家自然科学基金 82270689

广东省自然科学基金 2021A1515010571

广州市科技计划项目 202201010815

详细信息
    作者简介:
    通讯作者:

    张英才(ORCID:0000-0002-3086-2440),博士,副主任医师,研究方向为肝脏外科及相关基础研究,Email:zhangyc3@mail.sysu.edu.cn

  • 中图分类号: R575, R818.74

Protective effect and mechanism of mesenchymal stem cell-derived extracellular vesicle on radiation-induced liver injury

More Information
  • 摘要:   目的  探讨间充质干细胞来源的细胞外囊泡(MSC-EV)对照射诱导的小鼠放射性肝损伤和肝细胞系损伤的保护作用及相关机制。  方法  分别将C57BL/6小鼠随机分为空白组、造模组和MSC-EV治疗组(治疗组),每组9只;将AML12细胞随机分为对照组、照射组和MSC-EV干预组(干预组)。分别通过一次性15 Gy和6 Gy X线照射建立动物和细胞放射性损伤模型,照射后48 h取小鼠的肝组织与血清进行相关实验,照射后15 h对细胞进行相关检测。检测血清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)水平,肝组织和细胞丙二醛(MDA)含量,实时荧光定量逆转录聚合酶链反应(RT-qPCR)检测白细胞介素(IL)-1β、IL-6、转化生长因子(TGF)-β、CXC趋化因子配体(CXCL)10信使RNA(mRNA)相对表达量,肝组织苏木素-伊红(HE)染色进行肝组织病理损伤评分,脱氧核糖核酸末端转移酶介导的dUTP缺口末端标记(TUNEL)染色法、碘化丙啶(PI)染色法分别检测肝组织、细胞凋亡情况,蛋白质印迹法测定谷胱甘肽过氧化酶(GPX)4、铁死亡抑制蛋白(FSP)1的蛋白表达情况,二氢乙啶(DHE)染色检测活性氧簇(ROS)产生水平,并检测线粒体通透性转换孔(mPTP)荧光强度。  结果  与空白组比较,造模组小鼠血清AST、ALT水平均增高,小鼠肝组织IL-1β、TGF-β和CXCL10 mRNA相对表达量均增加,MDA含量增加,肝损伤评分升高,细胞凋亡率增加,细胞内ROS水平升高,小鼠肝组织GPX4、FSP1蛋白相对表达量下降,差异均有统计学意义(均为P<0.05);与造模组比较,治疗组小鼠血清AST、ALT水平均降低,小鼠肝组织IL-1β、TGF-β和CXCL10 mRNA相对表达量均下降,MDA含量减少,肝损伤评分降低,细胞凋亡率下降,细胞内ROS水平降低,小鼠肝组织GPX4、FSP1蛋白相对表达量增加,差异均有统计学意义(均为P<0.05)。与对照组比较,照射组细胞凋亡率增加,细胞内ROS水平升高,mPTP荧光强度减弱,IL-1β、TGF-β、IL-6的mRNA相对表达量均增加,MDA含量增加,GPX4、FSP1的蛋白相对表达量均下降,差异均有统计学意义(均为P<0.05);与照射组比较,干预组细胞凋亡率降低,细胞内ROS水平减少,mPTP荧光强度增强,IL-1β、TGF-β、IL-6的mRNA相对表达量均降低,MDA含量减少,GPX4、FSP1的蛋白相对表达量均增加,差异均有统计学意义(均为P<0.05)。  结论  MSC-EV可通过减少肝细胞铁死亡、提高抗氧化水平、减少脂质过氧化物的产生,从而有效缓解照射导致的放射性肝损伤。

     

  • 图  1  MSC-EV对小鼠肝脏放射性损伤的保护作用

    注:A图为各组小鼠血清AST、ALT水平;B图为各组小鼠肝组织的IL-1β、CXCL10、TGF-β mRNA相对表达量;C图为各组小鼠肝组织MDA含量;D、E图为各组小鼠肝组织HE染色结果(×400)和肝损伤评分;F、H图为各组小鼠肝组织TUNEL染色结果(×100)及细胞凋亡情况;G、I图为各组小鼠肝脏DHE染色结果(×200)及ROS水平;J图为蛋白质印迹法测定各组小鼠肝组织GPX4和FSP1蛋白表达。与空白组比较,aP<0.05;与造模组比较,bP<0.05。

    Figure  1.  Protective effect of MSC-EV on liver radiation injury in mice

    图  2  MSC-EV对AML12细胞放射性损伤的保护作用

    注:A、C图为各组AML12细胞PI染色结果(×200)及细胞凋亡情况;B、D图为各组AML12细胞DHE染色结果(×200)及ROS水平;E、F图为各组AML12细胞mPTP染色结果(×200);G图为各组AML12细胞IL-1β、TGF-β和IL-6的mRNA相对表达量;H图为各组AML12细胞MDA含量;I图为蛋白质印迹法检测各组AML12细胞GPX4、FSP的蛋白表达。与对照组比较,aP<0.05;与照射组比较,bP<0.05。

    Figure  2.  Protective effect of MSC-EV on liver radiation injury in AML12 cell

  • [1] 武兵兵, 张爱平, 赵信科, 等. 当归红芪超滤物对X射线引起人脐静脉内皮细胞损伤的保护作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1139-1147. DOI: 10.13481/j.1671-587X.20220506.

    WU BB, ZHANG AP, ZHAO XK, et al. Protective effect of ultra-filtration extract from Angelica Sinensis Radix and Hedysari Radix on human umbilical vein endothelial cell injury induced by X-ray and its mechanism[J]. J Jilin Univ(Med Edit), 2022, 48(5): 1139-1147. DOI: 10.13481/j.1671-587X.20220506.
    [2] 张丹, 孙静, 王佳, 等. 原发性肝细胞癌患者立体定向放射治疗所致的放射性肝损伤影响因素分析[J]. 中华肝脏病杂志, 2021, 29(6): 575-579. DOI: 10.3760/cma.j.cn501113-20200221-00058.

    ZHANG D, SUN J, WANG J, et al. Analysis of factors influencing radiation-induced liver injury caused by stereotactic radiotherapy in patients with primary hepatocellular carcinoma[J]. Chin J Hepatol, 2021, 29(6): 575-579. DOI: 10.3760/cma.j.cn501113-20200221-00058.
    [3] TAKEDA K, SAKAYAUCHI T, KUBOZONO M, et al. Palliative radiotherapy for gastric cancer bleeding: a multi-institutional retrospective study[J]. BMC Palliat Care, 2022, 21(1): 52. DOI: 10.1186/s12904-022-00943-2.
    [4] WANG H, LI X, PENG R, et al. Stereotactic ablative radiotherapy for colorectal cancer liver metastasis[J]. Semin Cancer Biol, 2021, 71: 21-32. DOI: 10.1016/j.semcancer.2020.06.018.
    [5] RÜCKERT M, FLOHR AS, HECHT M, et al. Radiotherapy and the immune system: more than just immune suppression[J]. Stem Cells, 2021, 39(9): 1155-1165. DOI: 10.1002/stem.3391.
    [6] KUNDISOVÁ I, JUAN ME, PLANAS JM. Simultaneous determination of phenolic compounds in plasma by LC-ESI-MS/MS and their bioavailability after the ingestion of table olives[J]. J Agric Food Chem, 2020, 68(37): 10213-10222. DOI: 10.1021/acs.jafc.0c04036.
    [7] LI YH, WU JX, HE Q, et al. Amelioration of radiation-induced liver damage by p-coumaric acid in mice[J]. Food Sci Biotechnol, 2022, 31(10): 1315-1323. DOI: 10.1007/s10068-022-01118-8.
    [8] HAN NK, JUNG MG, JEONG YJ, et al. Plasma fibrinogen-like 1 as a potential biomarker for radiation-induced liver injury[J]. Cells, 2019, 8(9): 1042. DOI: 10.3390/cells8091042.
    [9] ZHOU YJ, TANG Y, LIU SJ, et al. Radiation-induced liver disease: beyond DNA damage[J]. Cell Cycle, 2023, 22(5): 506-526. DOI: 10.1080/15384101.2022.2131163.
    [10] NIU H, ZHANG L, WANG B, et al. CircTUBD1 regulates radiation-induced liver fibrosis response via a circTUBD1/micro-203a-3p/Smad3 positive feedback loop[J]. J Clin Transl Hepatol, 2022, 10(4): 680-691. DOI: 10.14218/JCTH.2021.00511.
    [11] KOAY EJ, OWEN D, DAS P. Radiation-induced liver disease and modern radiotherapy[J]. Semin Radiat Oncol, 2018, 28(4): 321-331. DOI: 10.1016/j.semradonc.2018.06.007.
    [12] TAMARI Y, TAKATA T, TAKENO S, et al. Influence of boron neutron capture therapy on normal liver tissue[J]. Radiat Res, 2022, 198(4): 368-374. DOI: 10.1667/RADE-22-00018.1.
    [13] LEI G, MAO C, YAN Y, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies[J]. Protein Cell, 2021, 12(11): 836-857. DOI: 10.1007/s13238-021-00841-y.
    [14] ZHOU H, ZHOU YL, MAO JA, et al. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells[J]. Redox Biol, 2022, 55: 102413. DOI: 10.1016/j.redox.2022.102413.
    [15] LI L, WU D, DENG S, et al. NVP-AUY922 alleviates radiation-induced lung injury via inhibition of autophagy-dependent ferroptosis[J]. Cell Death Discov, 2022, 8(1): 86. DOI: 10.1038/s41420-022-00887-9.
    [16] FENG Z, QIN Y, HUO F, et al. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(1): 166287. DOI: 10.1016/j.bbadis.2021.166287.
    [17] NIE J, LIN B, ZHOU M, et al. Role of ferroptosis in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2018, 144(12): 2329-2337. DOI: 10.1007/s00432-018-2740-3.
    [18] SHOJAIE L, IORGA A, DARA L. Cell death in liver diseases: a review[J]. Int J Mol Sci, 2020, 21(24): 9682. DOI: 10.3390/ijms21249682.
    [19] WU J, WANG Y, JIANG R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1): 276. DOI: 10.1038/s41420-021-00660-4.
    [20] 张先平, 王乾兴, 陈斌等. 当归多糖抑制氧化损伤延缓造血干细胞衰老[J]. 中国中药杂志, 2013, 38(03): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201303025.htm

    ZHANG XP, WANG QX, CHEN B, et al. Angelica sinensis polysaccharides delay aging of hematopoietic stem cells through inhibitting oxidative damge[J]. China J Chin Mater Med, 2013, 38(3): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201303025.htm
    [21] CHENG Y, ZHOU J, LI Q, et al. The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice[J]. Food Funct, 2016, 7(2): 1033-1039. DOI: 10.1039/c5fo00855g.
    [22] ZHU W, ZHANG X, YU M, et al. Radiation-induced liver injury and hepatocyte senescence[J]. Cell Death Discov, 2021, 7(1): 244. DOI: 10.1038/s41420-021-00634-6.
    [23] ZHAO M, LIU S, WANG C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021, 15(1): 1519-1538. DOI: 10.1021/acsnano.0c08947.
    [24] DONG L, WANG Y, ZHENG T, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice[J]. Stem Cell Res Ther, 2021, 12(1): 4. DOI: 10.1186/s13287-020-02072-0.
    [25] MA J, SHI X, LI M, et al. MicroRNA-181a-2-3p shuttled by mesenchymal stem cell-secreted extracellular vesicles inhibits oxidative stress in Parkinson's disease by inhibiting EGR1 and NOX4[J]. Cell Death Discov, 2022, 8(1): 33. DOI: 10.1038/s41420-022-00823-x.
    [26] WEN S, DOONER M, PAPA E, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a radiation injury bone marrow murine model[J]. Int J Mol Sci, 2019, 20(21): 5468. DOI: 10.3390/ijms20215468.
    [27] GE M, YAO W, YUAN D, et al. Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury[J]. Cell Death Dis, 2017, 8(6): e2841. DOI: 10.1038/cddis.2017.236.
    [28] DAMM R, PECH M, HAAG F, et al. TNF-α indicates radiation-induced liver injury after interstitial high dose-rate brachytherapy[J]. In Vivo, 2022, 36(5): 2265-2274. DOI: 10.21873/invivo.12955.
    [29] HUMPTON TJ, HOCK AK, KIOURTIS C, et al. A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo[J]. Sci Signal, 2022, 15(720): eabd9099. DOI: 10.1126/scisignal.abd9099.
    [30] 陆春怡, 高斐, 朱慧, 等. 富硒长双歧杆菌DD98对X射线所致放射性肝损伤小鼠的保护作用[J]. 现代食品科技, 2021, 37(6): 10-19. DOI: 10.13982/j.mfst.1673-9078.2021.6.0957.

    LU CY, GAO F, ZHU H, et al. Protective effects of selenium-enriched bifidobacterium longum DD98 on X-ray radiation-induced hepatic tissue injury in mice[J]. Mod Food Sci Technol, 2021, 37(6): 10-19. DOI: 10.13982/j.mfst.1673-9078.2021.6.0957.
    [31] LIU Q, LI W, QIN S. Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray[J]. Biomed Pharmacother, 2020, 130: 110553. DOI: 10.1016/j.biopha.2020.110553.
    [32] LI W, JIANG L, LU X, et al. Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway[J]. BMC Complement Med Ther, 2021, 21(1): 10. DOI: 10.1186/s12906-020-03182-1.
    [33] LI T, CAO Y, LI B, et al. The biological effects of radiation-induced liver damage and its natural protective medicine[J]. Prog Biophys Mol Biol, 2021, 167: 87-95. DOI: 10.1016/j.pbiomolbio.2021.06.012.
    [34] MELIN N, YARAHMADOV T, SANCHEZ-TALTAVULL D, et al. A new mouse model of radiation-induced liver disease reveals mitochondrial dysfunction as an underlying fibrotic stimulus[J]. JHEP Rep, 2022, 4(7): 100508. DOI: 10.1016/j.jhepr.2022.100508.
    [35] LEI X, HE N, ZHU L, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p[J]. Antioxid Redox Signal, 2021, 35(11): 849-862. DOI: 10.1089/ars.2019.7965.
    [36] 刘洋, 孙岳, 杨安宁, 等. 铁死亡参与高脂饮食诱导的ApoE-/-小鼠动脉粥样硬化及ox-LDL诱导的泡沫细胞形成过程[J]. 实用医学杂志, 2021, 37(5): 585-590. DOI: 10.3969/j.issn.1006-5725.2021.05.006.

    LIU Y, SUN Y, YANG AN, et al. Involvement of ferroptosis in atherosclerosis induced by high-fat diet in ApoE-/- mouse and formation of ox-LDL-induced foam cell[J]. J Pract Med, 2021, 37(5): 585-590. DOI: 10.3969/j.issn.1006-5725.2021.05.006.
    [37] JIANG X, STOCKWELL BR, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.
    [38] 刘思齐, 杨正飞. 铁死亡: 心肌缺血再灌注损伤分子机制和药物治疗研究新靶点[J]. 中山大学学报(医学科学版), 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.

    LIU SQ, YANG ZF. Ferroptosis: novel research targets of molecular mechanism and drug therapy for myocardial ischemia-reperfusion injury[J]. J Sun Yat-sen Univ(Med Sci), 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.
    [39] 农复香, 蒋志雄, 李英豪, 等. 外泌体调控铁死亡在疾病诊断治疗中的应用与作用[J]. 中国组织工程研究, 2023, 27(15): 2443-2452. doi: 10.12307/2023.608

    NONG FX, JIANG ZX, LI YH, et al. Application and role of exosome-regulated ferroptosis in disease diagnosis and treatment[J]. Chin J Tissue Eng Res, 2023, 27(15): 2443-2452. doi: 10.12307/2023.608
    [40] YE LF, CHAUDHARY KR, ZANDKARIMI F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484. DOI: 10.1021/acschembio.9b00939.
  • 加载中
图(3)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  108
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回