留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重组人HMGB1调控内皮细胞成血管作用的机制初探

邓金涛, 许文斌, 任建华, 等. 重组人HMGB1调控内皮细胞成血管作用的机制初探[J]. 器官移植, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011
引用本文: 邓金涛, 许文斌, 任建华, 等. 重组人HMGB1调控内皮细胞成血管作用的机制初探[J]. 器官移植, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011
Deng Jintao, Xu Wenbin, Ren Jianhua, et al. Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011
Citation: Deng Jintao, Xu Wenbin, Ren Jianhua, et al. Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 397-403. doi: 10.3969/j.issn.1674-7445.2023.03.011

重组人HMGB1调控内皮细胞成血管作用的机制初探

doi: 10.3969/j.issn.1674-7445.2023.03.011
基金项目: 

广东省自然科学基金 2021A1515011772

详细信息
    作者简介:
    通讯作者:

    梁堂钊(ORCID:0000-0001-6059-0784),博士,副主任医师,硕士研究生导师,研究方向为骨缺损修复、3D生物打印,Email:liangtzh5@mail.sysu.edu.cn

  • 中图分类号: R617, R816.8

Mechanism of regulatory effect of recombinant human HMGB1 on endothelial cell angiogenesis

More Information
  • 摘要:   目的  探讨重组人高迁移率族蛋白1(rhHMGB1)在调控内皮细胞成血管过程中可能涉及的机制。  方法  将内皮细胞分为对照组、骨髓间充质干细胞(MSC)上清组以及rhHMGB1组。采用细胞计数试剂(CCK)-8法检测内皮细胞的增殖、存活情况;采用蛋白质印迹法检测血管内皮生长因子(VEGF)、Yes相关蛋白(YAP)、CD31、缺氧诱导因子(HIF)-1α的蛋白相对表达量;采用实时荧光定量聚合酶链反应(RT-qPCR)检测VEGF、YAP、CD31、HIF-1α的信使RNA(mRNA)相对表达量;采用Transwell实验检测内皮细胞迁移水平;免疫荧光实验检测YAP定位情况。  结果  与对照组比较,rhHMGB1组内皮细胞迁移率增加(P < 0.05),且细胞迁移率随着时间的延长而增加。与对照组比较,MSC上清组VEGF蛋白相对表达量增加,p-YAP蛋白表达增多,差异均有统计学意义(均为P < 0.05)。与对照组比较,rhHMGB1组的VEGF和HIF-1α蛋白相对表达量以及VEGF和CD31 mRNA相对表达量均增加,YAP和p-YAP蛋白表达均增多,YAP/p-YAP比值增加,差异均有统计学意义(均为P < 0.05)。与MSC上清组比较,rhHMGB1组的CD31 mRNA相对表达量增加,YAP蛋白表达增多,YAP/p-YAP比值增加,差异均有统计学意义(均为P < 0.05)。  结论  外源高浓度rhHMGB1可能通过介导YAP入核促进内皮细胞的迁移能力,并上调血管生成相关蛋白的表达。

     

  • 图  1  rhHMGB1对内皮细胞增殖和迁移能力的影响

    注:A图为各组内皮细胞增殖情况;B图为Transwell实验示各组细胞迁移情况(结晶紫,×100);C图为各组内皮细胞迁移率的统计结果。与对照组比较,aP < 0.05。

    Figure  1.  Effect of rhHMGB1 on proliferation and migration of endothelial cells

    图  2  rhHMGB1对内皮细胞VEGF、HIF-1a、CD31、YAP的mRNA和蛋白表达的影响

    注:A图为蛋白质印迹法检测各组VEGF、HIF-1α、CD31、YAP蛋白表达;B图为各组VEGF、HIF-1α、CD31、YAP蛋白相对表达量统计结果;C~F图为各组VEGF、HIF-1a、CD31、YAP mRNA相对表达量。与对照组比较,aP < 0.05;与MSC上清组比较,bP < 0.05。

    Figure  2.  Effect of rhHMGB1 on the expression levels of VEGF, HIF-1a, CD31 and YAP mRNA and protein in endothelial cells

    图  3  rhHMGB1对YAP入核的影响

    注:A图为免疫荧光示YAP定位情况(×400);B~D图为YAP、p-YAP及YAP/p-YAP比值统计结果。与对照组比较,aP < 0.05;与MSC上清组比较,bP < 0.05。

    Figure  3.  Effect of rhHMGB1 on YAP entry into the nucleus

  • [1] KÉROURÉDAN O, HAKOBYAN D, RÉMY M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration[J]. Biofabrication, 2019, 11(4): 045002. DOI: 10.1088/1758-5090/ab2620.
    [2] 蔡元庆, 刘谟震, 李忠海. 同种异体骨移植材料在脊柱融合中的应用[J]. 中国组织工程研究, 2023, 27(16): 2571-2579. DOI: 10.12307/2023.139.

    CAI YQ, LIU MZ, LI ZH. Application of allograft bone materials in spinal fusion[J]. Chin J Tissue Eng Res, 2023, 27(16): 2571-2579. DOI: 10.12307/2023.139.
    [3] GORSKI SM, DONG C, KRIEG AH, et al. Vascularized bone graft reconstruction following bone tumor resection at a multidisciplinary sarcoma center: outcome analysis[J]. Anticancer Res, 2021, 41(10): 5015-5023. DOI: 10.21873/anticanres.15316.
    [4] SCHULZE F, LANG A, SCHOON J, et al. Scaffold guided bone regeneration for the treatment of large segmental defects in long bones[J]. Biomedicines, 2023, 11(2): 325. DOI: 10.3390/biomedicines11020325.
    [5] 齐军强, 郭超, 牛东阳, 等. 金属离子掺杂羟基磷灰石骨修复材料的特性及应用[J]. 中国组织工程研究, 2023, 27(21): 3415-3422. DOI: 10.12307/2023.179.

    QI JQ, GUO C, NIU DY, et al. Characteristics and application of bone repair materials of metal ion doped hydroxyapatite[J]. Chin J Tissue Eng Res, 2023, 27(21): 3415-3422. DOI: 10.12307/2023.179.
    [6] VALTANEN RS, YANG YP, GURTNER GC, et al. Synthetic and bone tissue engineering graft substitutes: what is the future?[J]. Injury, 2021, 52 (Suppl 2): S72-S77. DOI: 10.1016/j.injury.2020.07.040.
    [7] MARUYAMA M, PAN CC, MOEINZADEH S, et al. Effect of porosity of a functionally-graded scaffold for the treatment of corticosteroid-associated osteonecrosis of the femoral head in rabbits[J]. J Orthop Translat, 2021, 28: 90-99. DOI: 10.1016/j.jot.2021.01.002.
    [8] 张春雨, 胡宝阳, 冯瑶, 等. 与骨缺损区域骨组织再生相匹配的新型硅酸钙(基)支架的性能优化[J]. 中国组织工程研究, 2022, 26(21): 3421-3428. DOI: 10.12307/2022.654.

    ZHANG CY, HU BY, FENG Y, et al. Performance optimization of a new type of calcium silicate (based) scaffold matched with bone tissue regeneration in the bone defect area[J]. Chin J Tissue Eng Res, 2022, 26(21): 3421-3428. DOI: 10.12307/2022.654.
    [9] KONDA SR, LITTLEFIELD CP, CARLOCK KD, et al. Autogenous iliac crest bone grafting for tibial nonunions revisited: does approach matter?[J]. Arch Orthop Trauma Surg, 2022, 142(6): 961-968. DOI: 10.1007/s00402-020-03735-6.
    [10] CHEAH CW, AL-NAMNAM NM, LAU MN, et al. Synthetic material for bone, periodontal, and dental tissue regeneration: where are we now, and where are we heading next?[J]. Materials (Basel), 2021, 14(20): 6123. DOI: 10.3390/ma14206123.
    [11] HOU X, ZHANG L, ZHOU Z, et al. Calcium phosphate-based biomaterials for bone repair[J]. J Funct Biomater, 2022, 13(4): 187. DOI: 10.3390/jfb13040187.
    [12] 丁育健, 冯德宏, 王凌, 等. 髋关节翻修术中应用数字设计3D打印定制带翼臼杯重建髋臼严重骨缺损[J]. 中华骨科杂志, 2023, 43(2): 97-103. DOI: 10.3760/cma.j.cn121113-20220929-00588.

    DING YJ, FENG DH, WANG L, et al. Digital design and 3D-printed customized flanged cups in hip revision with severe acetabular bone defects[J]. Chin J Orthop, 2023, 43(2): 97-103. DOI: 10.3760/cma.j.cn121113-20220929-00588.
    [13] PELLEGRINI L, FOGLIO E, PONTEMEZZO E, et al. HMGB1 and repair: focus on the heart[J]. Pharmacol Ther, 2019, 196: 160-182. DOI: 10.1016/j.pharmthera.2018.12.005.
    [14] ANDERSSON U, TRACEY KJ, YANG H. Post-translational modification of HMGB1 disulfide bonds in stimulating and inhibiting inflammation[J]. Cells, 2021, 10(12): 3323. DOI: 10.3390/cells10123323.
    [15] BELMADANI S, MATROUGUI K. Role of high mobility group box 1 in cardiovascular diseases[J]. Inflammation, 2022, 45(5): 1864-1874. DOI: 10.1007/s10753-022-01668-3.
    [16] CHEN R, KANG R, TANG D. The mechanism of HMGB1 secretion and release[J]. Exp Mol Med, 2022, 54(2): 91-102. DOI: 10.1038/s12276-022-00736-w.
    [17] LIN F, ZHANG W, XUE D, et al. Signaling pathways involved in the effects of HMGB1 on mesenchymal stem cell migration and osteoblastic differentiation[J]. Int J Mol Med, 2016, 37(3): 789-797. DOI: 10.3892/ijmm.2016.2479.
    [18] LO SARDO F, CANU V, MAUGERI-SACCÀ M, et al. YAP and TAZ: monocorial and bicorial transcriptional co-activators in human cancers[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(4): 188756. DOI: 10.1016/j.bbcan.2022.188756.
    [19] PIBIRI M, SIMBULA G. Role of the Hippo pathway in liver regeneration and repair: recent advances[J]. Inflamm Regen, 2022, 42(1): 59. DOI: 10.1186/s41232-022-00235-5.
    [20] MOYA IM, HALDER G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 211-226. DOI: 10.1038/s41580-018-0086-y.
    [21] 奚小荔, 周浩雄, 杨碧兰, 等. LRRC1通过DLG1/YAP信号通路促进肝癌细胞增殖的研究[J]. 新医学, 2021, 52(4): 272-277. DOI: 10.3969/j.issn.0253-9802.2021.04.009.

    XI XL, ZHOU HX, YANG BL, et al. LRRC1 promotes proliferation of hepatocellular carcinoma cells via DLG1/YAP signaling pathway[J]. New Med, 2021, 52(4): 272-277. DOI: 10.3969/j.issn.0253-9802.2021.04.009.
    [22] LEE HJ, HONG YJ, KIM M. Angiogenesis in chronic inflammatory skin disorders[J]. Int J Mol Sci, 2021, 22(21): 12035. DOI: 10.3390/ijms222112035.
    [23] DAMKHAM N, ISSARAGRISIL S, LORTHONGPANICH C. Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells[J]. Int J Mol Sci, 2022, 23(23): 14634. DOI: 10.3390/ijms232314634.
    [24] NAZEER MA, KARAOGLU IC, OZER O, et al. Neovascularization of engineered tissues for clinical translation: where we are, where we should be?[J]. APL Bioeng, 2021, 5(2): 021503. DOI: 10.1063/5.0044027.
    [25] HE Y, WANG W, LIN S, et al. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation[J]. Bioact Mater, 2021, 9: 491-507. DOI: 10.1016/j.bioactmat.2021.07.030.
    [26] KIM HJ, YOU SJ, YANG DH, et al. Injectable hydrogels based on MPEG-PCL-RGD and BMSCs for bone tissue engineering[J]. Biomater Sci, 2020, 8(15): 4334-4345. DOI: 10.1039/d0bm00588f.
    [27] ZHANG Y, REN H, LI J, et al. Elevated HMGB1 expression induced by hepatitis B virus X protein promotes epithelial-mesenchymal transition and angiogenesis through STAT3/miR-34a/NF-κB in primary liver cancer[J]. Am J Cancer Res, 2021, 11(2): 479-494.
    [28] QIN Q, LIU Y, YANG Z, et al. Hypoxia-inducible factors signaling in osteogenesis and skeletal repair[J]. Int J Mol Sci, 2022, 23(19): 11201. DOI: 10.3390/ijms231911201.
    [29] YANG Z, HUANG Y, ZHU L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species[J]. Cell Death Dis, 2021, 12(1): 77. DOI: 10.1038/s41419-020-03372-2.
    [30] ZHANG J, QIN Y, MARTINEZ M, et al. HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease[J]. J Clin Invest, 2021, 131(12): e139202. DOI: 10.1172/JCI139202.
    [31] LUO Y, YANG Z, YU Y, et al. HIF1α lactylation enhances KIAA1199 transcription to promote angiogenesis and vasculogenic mimicry in prostate cancer[J]. Int J Biol Macromol, 2022, 222(Pt B): 2225-2243. DOI: 10.1016/j.ijbiomac.2022.10.014.
    [32] LIU J, KANG H, LU J, et al. Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats[J]. BMC Musculoskelet Disord, 2021, 22(1): 944. DOI: 10.1186/s12891-021-04777-6.
    [33] CHEN W, WU P, YU F, et al. HIF-1α regulates bone homeostasis and angiogenesis, participating in the occurrence of bone metabolic diseases[J]. Cells, 2022, 11(22): 3552. DOI: 10.3390/cells11223552.
    [34] LEE JS, CHO HG, RYU JY, et al. Hypoxia promotes angiogenic effect in extracranial arteriovenous malformation endothelial cells[J]. Int J Mol Sci, 2022, 23(16): 9109. DOI: 10.3390/ijms23169109.
    [35] GUREVICH DB, DAVID DT, SUNDARARAMAN A, et al. Endothelial heterogeneity in development and wound healing[J]. Cells, 2021, 10(9) : 2338. DOI: 10.3390/cells10092338.
    [36] YADUNANDANAN NAIR N, SAMUEL V, RAMESH L, et al. Actin cytoskeleton in angiogenesis[J]. Biol Open, 2022, 11(12) : bio058899. DOI: 10.1242/bio.058899.
    [37] HENG BC, ZHANG X, AUBEL D, et al. An overview of signaling pathways regulating YAP/TAZ activity[J]. Cell Mol Life Sci, 2021, 78(2): 497-512. DOI: 10.1007/s00018-020-03579-8.
  • 加载中
图(4)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  150
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回