留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫细胞功能状态量化检测评估与临床应用专家共识

中国医疗保健国际交流促进会肝脏移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会, 中国医药生物技术协会生物诊断技术分会, 等. 免疫细胞功能状态量化检测评估与临床应用专家共识[J]. 器官移植, 2024, 15(4): 548-557. doi: 10.3969/j.issn.1674-7445.2024078
引用本文: 中国医疗保健国际交流促进会肝脏移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会, 中国医药生物技术协会生物诊断技术分会, 等. 免疫细胞功能状态量化检测评估与临床应用专家共识[J]. 器官移植, 2024, 15(4): 548-557. doi: 10.3969/j.issn.1674-7445.2024078
China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Liver Transplantation,Society of Kidney Transplantation; China Medicinal Biotech Association(CMBA), Society of Biological Diagnostics, et al. Expert Consensus on quantify monitoring and assessment of immune cell function status and clinical application[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 548-557. doi: 10.3969/j.issn.1674-7445.2024078
Citation: China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Liver Transplantation,Society of Kidney Transplantation; China Medicinal Biotech Association(CMBA), Society of Biological Diagnostics, et al. Expert Consensus on quantify monitoring and assessment of immune cell function status and clinical application[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 548-557. doi: 10.3969/j.issn.1674-7445.2024078

免疫细胞功能状态量化检测评估与临床应用专家共识

doi: 10.3969/j.issn.1674-7445.2024078
基金项目: 国家自然科学基金(82370665);北京市自然科学基金(7232068、7232065)
详细信息
    通讯作者:

    贺强,Email: heqiang349@sina.com

    李先亮,Email: lixianliangbjcy@126.com

  • 中图分类号: R617, R392.4

Expert Consensus on quantify monitoring and assessment of immune cell function status and clinical application

More Information
    Corresponding author: He Qiang, Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China, Email: heqiang349@sina.comLi Xianliang, Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China, Email: lixianliangbjcy@126.com
  • 摘要: 免疫系统是维持机体器官功能健康和预防疾病的重要保障,免疫健康管理和疾病免疫治疗目标是恢复免疫系统的正常功能状态。免疫学领域研究解决了如何抑制或提高免疫状态的技术性难题,随之带来亟需回答的问题是如何全面地检测和量化评估免疫状态,这是下一个挑战,目前国际上尚无成熟解决方案。免疫状态量化检测与可视化评估对疾病防控、亚健康状态管理和疾病免疫治疗均具有重要意义。本专家共识针对正常免疫状态定义和免疫细胞功能状态(免疫力)全面量化评估及可视化评分技术手段等问题进行了初步讨论,提出了正常免疫状态相关的基础概念和思考,探讨免疫细胞功能状态量化检测评估方向和原则,并以此为契机,推动免疫力解码以及免疫健康领域基础课题和临床试验的深入研究。

     

  • FIG. 3250.  FIG. 3250.

    FIG. 3250..  FIG. 3250.

    图  1  免疫力评分体系评分尺

    注:0分为免疫平衡状态,负分为免疫抑制,正分为免疫激活。

    Figure  1.  Scoring scale for immune scoring system

    图  2  过敏和自身免疫性疾病的免疫细胞功能状态量化评估指导治疗方向选择

    Figure  2.  Quantitative evaluation of immune cell function status in allergies and autoimmune diseases guides the selection of treatment directions

  • [1] DUNKELBERGER JR, SONG WC. Complement and its role in innate and adaptive immune responses[J]. Cell Res, 2010, 20(1): 34-50. DOI: 10.1038/cr.2009.139.
    [2] NETEA MG, DOMÍNGUEZ-ANDRÉS J, BARREIRO LB, et al. Defining trained immunity and its role in health and disease[J]. Nat Rev Immunol, 2020, 20(6): 375-388. DOI: 10.1038/s41577-020-0285-6.
    [3] NETEA MG, SCHLITZER A, PLACEK K, et al. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens[J]. Cell Host Microbe, 2019, 25(1): 13-26. DOI: 10.1016/j.chom.2018.12.006.
    [4] BARRY KC, HSU J, BROZ ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments[J]. Nat Med, 2018, 24(8): 1178-1191. DOI: 10.1038/s41591-018-0085-8.
    [5] PERNOT S, TERME M, RADOSEVIC-ROBIN N, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020, 23(1): 73-81. DOI: 10.1007/s10120-019-00983-3.
    [6] HOSSEINI A, HASHEMI V, SHOMALI N, et al. Innate and adaptive immune responses against coronavirus[J]. Biomed Pharmacother, 2020, 132: 110859. DOI: 10.1016/j.biopha.2020.110859.
    [7] PALMER S, CUNNIFFE N, DONNELLY R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production[J]. J R Soc Interface, 2021, 18(176): 20200982. DOI: 10.1098/rsif.2020.0982.
    [8] 李先亮, 贾亚男, 王若麟, 等. 创新免疫状态评估体系的建立及其在疾病诊疗中的应用[J]. 中国现代医学杂志, 2021, 31(16): 1-6. DOI: 10.3969/j.issn.1005-8982.2021.16.001.

    LI XL, JIA YN, WANG RL, et al. Research progress in novel approaches to immune status evaluation and their application in clinical practice[J]. China J Mod Med, 2021, 31(16): 1-6. DOI: 10.3969/j.issn.1005-8982.2021.16.001.
    [9] KOWALSKI RJ, POST DR, MANNON RB, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay[J]. Transplantation, 2006, 82(5): 663-668. DOI: 10.1097/01.tp.0000234837.02126.70.
    [10] PALMER S, ALBERGANTE L, BLACKBURN CC, et al. Thymic involution and rising disease incidence with age[J]. Proc Natl Acad Sci U S A, 2018, 115(8): 1883-1888. DOI: 10.1073/pnas.1714478115.
    [11] LE SAUX S, WEYAND CM, GORONZY JJ. Mechanisms of immunosenescence: lessons from models of accelerated immune aging[J]. Ann N Y Acad Sci, 2012, 1247: 69-82. DOI: 10.1111/j.1749-6632.2011.06297.x.
    [12] SANMAMED MF, CHEN L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2019, 176(3): 677. DOI: 10.1016/j.cell.2019.01.008.
    [13] FENG F, ZHENG G, WANG Q, et al. Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer[J]. BMC Gastroenterol, 2018, 18(1): 148. DOI: 10.1186/s12876-018-0877-9.
    [14] 李瀚, 吕少诚, 贾亚男, 等. 中性粒细胞/淋巴细胞比值与可切除远端胆管癌远期预后的相关性研究[J]. 解放军医学院学报, 2020, 41(10): 959-962,982. DOI: 10.3969/j.issn.2095-5227.2020.10.002.

    LI H, LYU SC, JIA YN, et al. Correlation between neutrophil-to-lymphocyte ratio and long-term prognosis in resectable distal cholangiocarcinoma[J]. Acad J Chin PLA Med Sch, 2020, 41(10): 959-962,982. DOI: 10.3969/j.issn.2095-5227.2020.10.002.
    [15] FERNÁNDEZ-RUIZ M, KUMAR D, HUMAR A. Clinical immune-monitoring strategies for predicting infection risk in solid organ transplantation[J]. Clin Transl Immunology, 2014, 3(2): e12. DOI: 10.1038/cti.2014.3.
    [16] MECKIFF BJ, RAMÍREZ-SUÁSTEGUI C, FAJARDO V, et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19[J]. Cell, 2020, 183(5): 1340-1353. e16. DOI: 10.1016/j.cell.2020.10.001.
    [17] PENG X, OUYANG J, ISNARD S, et al. Sharing CD4+ T cell loss: when COVID-19 and HIV collide on immune system[J]. Front Immunol, 2020, 11: 596631. DOI: 10.3389/fimmu.2020.596631.
    [18] RODRIGO E, LÓPEZ-HOYOS M, CORRAL M, et al. ImmuKnow as a diagnostic tool for predicting infection and acute rejection in adult liver transplant recipients: a systematic review and meta-analysis[J]. Liver Transpl, 2012, 18(10): 1245-1253. DOI: 10.1002/lt.23497.
    [19] BERGLUND D, BENGTSSON M, BIGLARNIA A, et al. Screening of mortality in transplant patients using an assay for immune function[J]. Transpl Immunol, 2011, 24(4): 246-250. DOI: 10.1016/j.trim.2010.12.005.
    [20] XUE F, ZHANG J, HAN L, et al. Immune cell functional assay in monitoring of adult liver transplantation recipients with infection[J]. Transplantation, 2010, 89(5): 620-626. DOI: 10.1097/TP.0b013e3181c690fa.
    [21] 黄小慧, 张英才, 朱曙光, 等. Cylex ImmuKnow免疫细胞功能检测在肝移植术后监测中的应用 [J/OL]. 中华肝脏外科手术学电子杂志, 2016, 5(5): 311-314. DOI: 10.3877/cma.j.issn.2095-3232.2016.05.010.

    HUANG XH, ZHANG YC, ZHU SG, et al. Application of Cylex Immu Know immune cell function assay in postoperative monitoring after liver transplantation[J/OL]. Chin J Hepatic Surg Electron Ed, 2016, 5(5): 311-314. DOI: 10.3877/cma.j.issn.2095-3232.2016.05.010.
    [22] QUAGLIA M, CENA T, FENOGLIO R, et al. Immune function assay (immunknow) drop over first 6months after renal transplant: a predictor of opportunistic viral infections?[J]. Transplant Proc, 2014, 46(7): 2220-2223. DOI: 10.1016/j.transproceed.2014.07.050.
    [23] LING X, XIONG J, LIANG W, et al. Can immune cell function assay identify patients at risk of infection or rejection? a meta-analysis[J]. Transplantation, 2012, 93(7): 737-743. DOI: 10.1097/TP.0b013e3182466248.
    [24] PICARDA E, BÉZIE S, VENTURI V, et al. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection[J]. J Clin Invest, 2014, 124(6): 2497-2512. DOI: 10.1172/JCI71533.
    [25] ZHENG C, ZHENG L, YOO JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017, 169(7): 1342-1356. e16. DOI: 10.1016/j.cell.2017.05.035.
    [26] ZHUO Y, YANG X, SHUAI P, et al. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood[J]. Front Immunol, 2022, 13: 916430. DOI: 10.3389/fimmu.2022.916430.
    [27] ZHANG L, YU X, ZHENG L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272. DOI: 10.1038/s41586-018-0694-x.
    [28] ZHANG Y, CHEN H, MO H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12): 1578-1593. e8. DOI: 10.1016/j.ccell.2021.09.010.
    [29] ZHENG L, QIN S, SI W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells[J]. Science, 2021, 374(6574): abe6474. DOI: 10.1126/science.abe6474.
    [30] ZHOU Z, WU Q, YAN Z, et al. Extracellular RNA in a single droplet of human serum reflects physiologic and disease states[J]. Proc Natl Acad Sci U S A, 2019, 116(38): 19200-19208. DOI: 10.1073/pnas.1908252116.
    [31] BEST MG, SOL N, KOOI I, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics[J]. Cancer Cell, 2015, 28(5): 666-676. DOI: 10.1016/j.ccell.2015.09.018.
    [32] MUTHUKUMAR T, DADHANIA D, DING R, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients[J]. N Engl J Med, 2005, 353(22): 2342-2351. DOI: 10.1056/NEJMoa051907.
    [33] AMIRZARGAR A, LESSANPEZESHKI M, FATHI A, et al. Th1/Th2 cytokine analysis in Iranian renal transplant recipients[J]. Transplant Proc, 2005, 37(7): 2985-2987. DOI: 10.1016/j.transproceed.2005.08.004.
    [34] JIA Y, WEI Y. Modulators of microRNA function in the immune system[J]. Int J Mol Sci, 2020, 21(7): 2357. DOI: 10.3390/ijms21072357.
    [35] HASSAN NE, MOSELHY WA, ELDOMANY EB, et al. Evaluation of miRNA-16-2-3P, miRNA-618 levels and their diagnostic and prognostic value in the regulation of immune response during SARS Cov-2 infection[J]. Immunogenetics, 2023, 75(4): 403-410. DOI: 10.1007/s00251-023-01308-6.
    [36] SAWITZKI B, SCHLICKEISER S, REINKE P, et al. Monitoring tolerance and rejection in organ transplant recipients[J]. Biomarkers, 2011, 16(Suppl 1): S42-S50. DOI: 10.3109/1354750X.2011.578754.
    [37] DÖCKE WD, HÖFLICH C, DAVIS KA, et al. Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study[J]. Clin Chem, 2005, 51(12): 2341-2347. DOI: 10.1373/clinchem.2005.052639.
    [38] VAN GELDER T, VAN SCHAIK RH, HESSELINK DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation[J]. Nat Rev Nephrol, 2014, 10(12): 725-731. DOI: 10.1038/nrneph.2014.172.
    [39] SOOD S, TESTRO AG. Immune monitoring post liver transplant[J]. World J Transplant, 2014, 4(1): 30-39. DOI: 10.5500/wjt.v4.i1.30.
    [40] LIEW CC, DZAU VJ. Molecular genetics and genomics of heart failure[J]. Nat Rev Genet, 2004, 5(11): 811-825. DOI: 10.1038/nrg1470.
    [41] TSUANG MT, NOSSOVA N, YAGER T, et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report[J]. Am J Med Genet B Neuropsychiatr Genet, 2005, 133B(1): 1-5. DOI: 10.1002/ajmg.b.30161.
    [42] MARSHALL KW, ZHANG H, YAGER TD, et al. Blood-based biomarkers for detecting mild osteoarthritis in the human knee[J]. Osteoarthritis Cartilage, 2005, 13(10): 861-871. DOI: 10.1016/j.joca.2005.06.002.
    [43] MA J, LIEW CC. Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease[J]. J Mol Cell Cardiol, 2003, 35(8): 993-998. DOI: 10.1016/s0022-2828(03)00179-2.
    [44] VANBUREN P, MA J, CHAO S, et al. Blood gene expression signatures associate with heart failure outcomes[J]. Physiol Genomics, 2011, 43(8): 392-397. DOI: 10.1152/physiolgenomics.00175.2010.
    [45] BURAKOFF R, HANDE S, MA J, et al. Differential regulation of peripheral leukocyte genes in patients with active Crohn’s disease and Crohn’s disease in remission[J]. J Clin Gastroenterol, 2010, 44(2): 120-126. DOI: 10.1097/MCG.0b013e3181a9ef53.
    [46] MARSHALL KW, MOHR S, KHETTABI FE, et al. A blood-based biomarker panel for stratifying current risk for colorectal cancer[J]. Int J Cancer, 2010, 126(5): 1177-1186. DOI: 10.1002/ijc.24910.
    [47] CAO S, ZHANG Q, SONG L, et al. Dysregulation of innate and adaptive immune responses in asymptomatic SARS-CoV-2 infection with delayed viral clearance[J]. Int J Biol Sci, 2022, 18(12): 4648-4657. DOI: 10.7150/ijbs.72963.
    [48] LIU D, LIU B, LIN C, et al. Imbalance of peripheral lymphocyte subsets in patients with ankylosing spondylitis: a meta-analysis[J]. Front Immunol, 2021, 12: 696973. DOI: 10.3389/fimmu.2021.696973.
    [49] HE YT, ZHOU Y, SHAO Q, et al. Immunoregulatory effects of subcutaneous immunotherapy on lymphocyte subgroups and cytokines in children with asthma[J]. J Immunol Res, 2019: 7024905. DOI: 10.1155/2019/7024905.
    [50] 寇建涛, 李先亮, 朱继巧, 等. 自创免疫状态量化评分标准评估肝移植受者术后免疫状态的可行性分析[J]. 中华器官移植杂志, 2020, 41(6): 362-366. DOI: 10.3760/cma.j.cn421203-20191110-00407.

    KOU JT, LI XL, ZHU JQ, et al. Application of Mingdao immune score system for evaluating the immune status of liver transplant recipients[J]. Chin J Organ Transplant, 2020, 41(6): 362-366. DOI: 10.3760/cma.j.cn421203-20191110-00407.
    [51] UEMURA T, RILEY TR, KHAN A, et al. Immune functional assay for immunosuppressive management in post-transplant malignancy[J]. Clin Transplant, 2011, 25(1): E32-E37. DOI: 10.1111/j.1399-0012.2010.01303.x.
    [52] LEVITSKY J. Next level of immunosuppression: drug/immune monitoring[J]. Liver Transpl, 2011, 17(Suppl 3): S60-S65. DOI: 10.1002/lt.22385.
    [53] NANKIVELL BJ, PʼNG CH, OʼCONNELL PJ, et al. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras[J]. Transplantation, 2016, 100(8): 1723-1731. DOI: 10.1097/TP.0000000000001243.
  • 加载中
图(3)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  46
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回