留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞转分化在肾纤维化中的调控机制

杨艳燕, 陶涛, 罗朋立. 巨噬细胞转分化在肾纤维化中的调控机制[J]. 器官移植, 2024, 15(1): 125-130. doi: 10.3969/j.issn.1674-7445.2023190
引用本文: 杨艳燕, 陶涛, 罗朋立. 巨噬细胞转分化在肾纤维化中的调控机制[J]. 器官移植, 2024, 15(1): 125-130. doi: 10.3969/j.issn.1674-7445.2023190
Yang Yanyan, Tao Tao, Luo Pengli. Regulation mechanism of macrophage transition in renal fibrosis[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 125-130. doi: 10.3969/j.issn.1674-7445.2023190
Citation: Yang Yanyan, Tao Tao, Luo Pengli. Regulation mechanism of macrophage transition in renal fibrosis[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 125-130. doi: 10.3969/j.issn.1674-7445.2023190

巨噬细胞转分化在肾纤维化中的调控机制

doi: 10.3969/j.issn.1674-7445.2023190
基金项目: 青海省科技计划应用基础研究(2022-ZJ-766)
详细信息
    作者简介:
    通讯作者:

    罗朋立(ORCID 0009-0008-2271-2750),博士,教授,主任医师,研究方向为低氧与肾脏病,Email:qhlpl2108@163.com

  • 中图分类号: R617, R329.2

Regulation mechanism of macrophage transition in renal fibrosis

More Information
  • 摘要: 肾纤维化是所有进展性慢性肾病发展至终末期肾病的共同病理改变。肾移植术后发生肾纤维化会严重影响移植肾功能。巨噬细胞具有高度的异质性和可塑性,在肾损伤过程中,受局部微环境刺激被募集、激活和极化,通过多种机制参与肾组织损伤、修复和纤维化的过程。近年来,多项研究表明,巨噬细胞可以转分化为肌成纤维细胞直接参与肾纤维化形成,这一过程被称为巨噬细胞-肌成纤维细胞转分化,但其调控机制尚不清楚。因此,本文就巨噬细胞在肾纤维化中的作用、巨噬细胞-肌成纤维细胞转分化的特点及可能的调控机制进行综述,以期为肾纤维化的相关研究提供参考。

     

  • [1] HUMPHREYS BD. Mechanisms of renal fibrosis[J]. Annu Rev Physiol, 2018, 80: 309-326. DOI: 10.1146/annurev-physiol-022516-034227.
    [2] KUPPE C, IBRAHIM MM, KRANZ J, et al. Decoding myofibroblast origins in human kidney fibrosis[J]. Nature, 2021, 589(7841): 281-286. DOI: 10.1038/s41586-020-2941-1.
    [3] XU C, HONG Q, ZHUANG K, et al. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition[J]. Metabolism, 2023, 145: 155592. DOI: 10.1016/j.metabol.2023.155592.
    [4] SUN X, XIAO H, LI S, et al. Connexin32 ameliorates epithelial-to-mesenchymal-transition in diabetic renal tubular via inhibiting NOX4[J]. Pharmacol Res, 2022, 176: 106084. DOI: 10.1016/j.phrs.2022.106084.
    [5] 张小燕, 王若楠, 孙嘉星, 等. 内皮-间质转化在肾纤维化中的作用及机制研究进展[J]. 空军军医大学学报, 2022, 43(3): 359-364. DOI: 10.13276/j.issn.2097-1656.2022.03.019.

    ZHANG XY, WANG RN, SUN JX, et al. Research advances in roles and mechanisms of endothelial-to-mesenchymal transition in renal fibrosis[J]. J Air Force Med Univ, 2022, 43(3): 359-364. DOI: 10.13276/j.issn.2097-1656.2022.03.019.
    [6] 许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39(4): 922-928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.

    XU J, JIN WL, LI X. A new perspective in the treatment of liver fibrosis: targeting macrophage metabolism[J]. J Clin Hepatol, 2023, 39(4): 922-928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.
    [7] 张倩倩, 周晓慧, 唐伦先. 巨噬细胞介导上皮间充质转分化在纤维化疾病中的作用[J]. 中华危重病急救医学, 2018, 30(1): 91-93. DOI: 10.3760/cma.j.issn.2095-4352.2018.01.018.

    ZHANG QQ, ZHOU XH, TANG LX. Roles of macrophage-mediated epithelial mesenchymal transdifferentiation in fibrotic diseases[J]. Chin Crit Care Med, 2018, 30(1): 91-93. DOI: 10.3760/cma.j.issn.2095-4352.2018.01.018.
    [8] 邓墨渊, 彭坤. 巨噬细胞及其特异性调控在生物材料纤维化形成中的作用[J]. 中国组织工程研究, 2023, 27(25): 4085-4092.

    DENG MY, PENG K. Role and regulation of macrophages in biomaterial-mediated fibrosis formation[J]. Chin J Tissue Eng Res, 2023, 27(25): 4085-4092.
    [9] VIERHOUT M, AYOUB A, NAIEL S, et al. Monocyte and macrophage derived myofibroblasts: is it fate? a review of the current evidence[J]. Wound Repair Regen, 2021, 29(4): 548-562. DOI: 10.1111/wrr.12946.
    [10] 陈晓彤, 梁静, 刘相富, 等. 慢性乙型肝炎患者外周单核细胞衍生的巨噬细胞的极化状态与HBV DNA的相关性及其动态变化[J]. 中山大学学报(医学科学版), 2022, 43(1): 86-95. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0.

    CHEN XT, LIANG J, LIU XF, et al. Correlation and dynamic changes between the polarization of monocyte-derived macrophages and HBV DNA in chronic hepatitis B[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 86-95. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0.
    [11] 王光川, LI XC. 天然免疫细胞的获得性免疫属性及其在移植排斥中的作用[J]. 中华消化外科杂志, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.

    WANG GC, LI XC. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chin J Dig Surg, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.
    [12] YAO W, CHEN Y, LI Z, et al. Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury[J]. Adv Sci (Weinh), 2022, 9(12): e2103675. DOI: 10.1002/advs.202103675.
    [13] TANG PM, NIKOLIC-PATERSON DJ, LAN HY. Macrophages: versatile players in renal inflammation and fibrosis[J]. Nat Rev Nephrol, 2019, 15(3): 144-158. DOI: 10.1038/s41581-019-0110-2.
    [14] CHEN H, LIU N, ZHUANG S. Macrophages in renal injury, repair, fibrosis following acute kidney injury and targeted therapy[J]. Front Immunol, 2022, 13: 934299. DOI: 10.3389/fimmu.2022.934299.
    [15] 任滌非, 王於尘, 苗芸. 巨噬细胞在移植肾纤维化中的作用研究进展[J]. 器官移植, 2023, 14(5): 723-729. DOI: 10.3969/j.issn.1674-7445.2023084.

    REN DF, WANG YC, MIAO Y. Research progress on the role of macrophages in renal allograft fibrosis[J]. Organ Transplant, 2023, 14(5): 723-729. DOI: 10.3969/j.issn.1674-7445.2023084.
    [16] HU X, XU Y, ZHANG Z, et al. TSC1 affects the process of renal ischemia-reperfusion injury by controlling macrophage polarization[J]. Front Immunol, 2021, 12: 637335. DOI: 10.3389/fimmu.2021.637335.
    [17] CHEN M, MENON MC, WANG W, et al. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy[J]. Nat Commun, 2023, 14(1): 4297. DOI: 10.1038/s41467-023-40086-3.
    [18] YUAN Y, SUN M, JIN Z, et al. Dapagliflozin ameliorates diabetic renal injury through suppressing the self-perpetuating cycle of inflammation mediated by HMGB1 feedback signaling in the kidney[J]. Eur J Pharmacol, 2023, 943: 175560. DOI: 10.1016/j.ejphar.2023.175560.
    [19] WEI H, CHEN L, LI Q, et al. CD137L-macrophage induce lymphatic endothelial cells autophagy to promote lymphangiogenesis in renal fibrosis[J]. Int J Biol Sci, 2022, 18(3): 1171-1187. DOI: 10.7150/ijbs.66781.
    [20] LU YP, WU HW, ZHU T, et al. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy[J]. Biomed Pharmacother, 2022, 156: 113947. DOI: 10.1016/j.biopha.2022.113947.
    [21] NIKOLIC-PATERSON DJ, WANG S, LAN HY. Macrophages promote renal fibrosis through direct and indirect mechanisms[J]. Kidney Int Suppl (2011), 2014, 4(1): 34-38. DOI: 10.1038/kisup.2014.7.
    [22] MENG XM, WANG S, HUANG XR, et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis[J]. Cell Death Dis, 2016, 7(12): e2495. DOI: 10.1038/cddis.2016.402.
    [23] WANG YY, JIANG H, PAN J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J]. J Am Soc Nephrol, 2017, 28(7): 2053-2067. DOI: 10.1681/ASN.2016050573.
    [24] ZHANG CJ, LI H, XIONG YZ, et al. Chronic intermittent hypoxia induces renal fibrosis through MR activation[J]. Exp Gerontol, 2022, 163: 111780. DOI: 10.1016/j.exger.2022.111780.
    [25] BUCHTLER S, GRILL A, HOFMARKSRICHTER S, et al. Cellular origin and functional relevance of collagen I production in the kidney[J]. J Am Soc Nephrol, 2018, 29(7): 1859-1873. DOI: 10.1681/ASN.2018020138.
    [26] KRAMANN R, MACHADO F, WU H, et al. Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis[J]. JCI Insight, 2018, 3(9): e99561. DOI: 10.1172/jci.insight.99561.
    [27] WANG Y, LI Y, CHEN Z, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy[J]. Cell Death Dis, 2022, 13(8): 693. DOI: 10.1038/s41419-022-05138-4.
    [28] LI X, WU J, ZHU S, et al. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis?[J]. Cell Mol Life Sci, 2023, 80(7): 195. DOI: 10.1007/s00018-023-04846-0.
    [29] FENG Y, GUO F, XIA Z, et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition[J]. Front Immunol, 2020, 11: 566535. DOI: 10.3389/fimmu.2020.566535.
    [30] TORRES Á, MUÑOZ K, NAHUELPÁN Y, et al. Intraglomerular monocyte/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A2B adenosine receptor[J]. Cells, 2020, 9(4): 1051. DOI: 10.3390/cells9041051.
    [31] LIU H, GUAN Q, ZHAO P, et al. TGF-β-induced CCR8 promoted macrophage transdifferentiation into myofibroblast-like cells[J]. Exp Lung Res, 2022, 48(2): 86-99. DOI: 10.1080/01902148.2022.2055227.
    [32] TANG PC, CHUNG JY, XUE VW, et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition[J]. Adv Sci (Weinh), 2022, 9(1): e2101235. DOI: 10.1002/advs.202101235.
    [33] 王东, 吴永贵, 齐向明. 高糖环境下肾小管上皮细胞来源外泌体诱导巨噬细胞向肌成纤维细胞转化[J]. 安徽医科大学学报, 2022, 57(6): 847-854. DOI: 10.19405/j.cnki.issn1000-1492.2022.06.002.

    WANG D, WU YG, QI XM. Exosomes from high glucose-treated renal tubular epithelial cells induce macrophage-to-myofibroblast transformation[J]. Acta Univ Med Anhui, 2022, 57(6): 847-854. DOI: 10.19405/j.cnki.issn1000-1492.2022.06.002.
    [34] LEBLEU VS, TADURI G, O'CONNELL J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053. DOI: 10.1038/nm.3218.
    [35] ZHANG F, WANG H, WANG X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget, 2016, 7(32): 52294-52306. DOI: 10.18632/oncotarget.10561.
    [36] WEI J, XU Z, YAN X. The role of the macrophage-to-myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13: 934377. DOI: 10.3389/fimmu.2022.934377.
    [37] WANG S, MENG XM, NG YY, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis[J]. Oncotarget, 2016, 7(8): 8809-8822. DOI: 10.18632/oncotarget.6604.
    [38] ALWANIAN WM, VLAJIC K, BIE W, et al. Protein tyrosine kinase 6 regulates activation of Src kinase[J]. J Biol Chem, 2022, 298(11): 102584. DOI: 10.1016/j.jbc.2022.102584.
    [39] KOUTRAS N, MORFOS V, KONNARIS K, et al. Integrated signaling and transcriptome analysis reveals Src family kinase individualities and novel pathways controlled by their constitutive activity[J]. Front Immunol, 2023, 14: 1224520. DOI: 10.3389/fimmu.2023.1224520.
    [40] WANG J, ZHUANG S. Src family kinases in chronic kidney disease[J]. Am J Physiol Renal Physiol, 2017, 313(3): F721-F728. DOI: 10.1152/ajprenal.00141.2017.
    [41] TANG PM, ZHOU S, LI CJ, et al. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring[J]. Kidney Int, 2018, 93(1): 173-187. DOI: 10.1016/j.kint.2017.07.026.
    [42] TANG PM, ZHANG YY, XIAO J, et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition[J]. Proc Natl Acad Sci U S A, 2020, 117(34): 20741-20752. DOI: 10.1073/pnas.1917663117.
    [43] CHEN J, TANG Y, ZHONG Y, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition[J]. Mol Ther, 2022, 30(9): 3017-3033. DOI: 10.1016/j.ymthe.2022.06.019.
  • 加载中
图(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  182
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回