留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移植肾纤维化的诊断和治疗优化方案

王浩钧, 孙泽家, 王玮. 移植肾纤维化的诊断和治疗优化方案[J]. 器官移植, 2024, 15(1): 19-25. doi: 10.3969/j.issn.1674-7445.2023156
引用本文: 王浩钧, 孙泽家, 王玮. 移植肾纤维化的诊断和治疗优化方案[J]. 器官移植, 2024, 15(1): 19-25. doi: 10.3969/j.issn.1674-7445.2023156
Wang Haojun, Sun Zejia, Wang Wei. Optimal diagnosis and treatment for renal allograft fibrosis[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 19-25. doi: 10.3969/j.issn.1674-7445.2023156
Citation: Wang Haojun, Sun Zejia, Wang Wei. Optimal diagnosis and treatment for renal allograft fibrosis[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 19-25. doi: 10.3969/j.issn.1674-7445.2023156

移植肾纤维化的诊断和治疗优化方案

doi: 10.3969/j.issn.1674-7445.2023156
基金项目: 北京市自然科学基金面上项目(7212040)
详细信息
    作者简介:
    通讯作者:

    王玮(ORCID 0000-0003-2642-3338),Email:weiwang0920@163.com

  • 中图分类号: R617, R692

Optimal diagnosis and treatment for renal allograft fibrosis

More Information
  • 摘要: 移植肾纤维化是肾移植术后常见且严重的并发症之一,严重影响移植肾的功能和存活率,甚至可能导致器官衰竭和患者死亡。目前关于移植肾纤维化的研究非常复杂,包括免疫、缺血-再灌注损伤、感染、药物毒性等,移植肾纤维化的诊断和治疗依然极具挑战性。本文旨在总结当前研究的最新进展,深入探讨移植肾纤维化的成因以及最新的诊断和治疗方法。通过提高诊断的准确率和优化治疗方案,有望改善肾移植受者的预后,也将为临床医师更好地管理肾移植受者提供参考。

     

  • [1] MCDANIELS JM, SHETTY AC, KUSCU C, et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis[J]. Kidney Int, 2023, 103(6): 1077-1092. DOI: 10.1016/j.kint.2023.02.018.
    [2] FENIG Y, SURESH S, ROCHON C. Long-term survival after kidney transplantation[J]. N Engl J Med, 2022, 386(5): 499. DOI: 10.1056/NEJMc2115207.
    [3] WOLFE RA, ROYS EC, MERION RM. Trends in organ donation and transplantation in the United States, 1999-2008[J]. Am J Transplant, 2010, 10(4 Pt 2): 961-972. DOI: 10.1111/j.1600-6143.2010.03021.x.
    [4] 任滌非, 王於尘, 苗芸. 巨噬细胞在移植肾纤维化中的作用研究进展[J]. 器官移植, 2023, 14(5): 723-729. DOI: 10.3969/j.issn.1674-7445.2023084.

    REN DF, WANG YC, MIAO Y. Research progress on the role of macrophages in renal allograft fibrosis[J]. Organ Transplant, 2023, 14(5): 723-729. DOI: 10.3969/j.issn.1674-7445.2023084.
    [5] NANKIVELL BJ, BORROWS RJ, FUNG CL, et al. The natural history of chronic allograft nephropathy[J]. N Engl J Med, 2003, 349(24): 2326-2333. DOI: 10.1056/NEJMoa020009.
    [6] SARITAS T, KRAMANN R. Kidney allograft fibrosis: diagnostic and therapeutic strategies[J]. Transplantation, 2021, 105(10): e114-e130. DOI: 10.1097/TP.0000000000003678.
    [7] HEILMAN RL, SMITH ML, KURIAN SM, et al. Transplanting kidneys from deceased donors with severe acute kidney injury[J]. Am J Transplant, 2015, 15(8): 2143-2151. DOI: 10.1111/ajt.13260.
    [8] STEGALL MD, PARK WD, LARSON TS, et al. The histology of solitary renal allografts at 1 and 5 years after transplantation[J]. Am J Transplant, 2011, 11(4): 698-707. DOI: 10.1111/j.1600-6143.2010.03312.x.
    [9] SERÓN D, MORESO F, RAMÓN JM, et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy[J]. Transplantation, 2000, 69(9): 1849-1855. DOI: 10.1097/00007890-200005150-00019.
    [10] MANNON RB, MATAS AJ, GRANDE J, et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: a potent predictor of allograft failure[J]. Am J Transplant, 2010, 10(9): 2066-2073. DOI: 10.1111/j.1600-6143.2010.03240.x.
    [11] SHIMIZU T, TOMA H, HAYAKAWA N, et al. Clinical and pathological analyses of interstitial fibrosis and tubular atrophy cases after kidney transplantation[J]. Nephrology (Carlton), 2016, 21(Suppl 1): 26-30. DOI: 10.1111/nep.12766.
    [12] MENON MC, CHUANG PY, LI Z, et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis[J]. J Clin Invest, 2015, 125(1): 208-221. DOI: 10.1172/JCI76902.
    [13] MOORE J, MCKNIGHT AJ, SIMMONDS MJ, et al. Association of caveolin-1 gene polymorphism with kidney transplant fibrosis and allograft failure[J]. JAMA, 2010, 303(13): 1282-1287. DOI: 10.1001/jama.2010.356.
    [14] LIU X, LIU K, GUI Z, et al. Single nucleotide polymorphisms of IL-33 gene correlated with renal allograft fibrosis in kidney transplant recipients[J]. J Immunol Res, 2021: 8029180. DOI: 10.1155/2021/8029180.
    [15] LIANG H, XU F, WEN XJ, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion[J]. Eur J Pharmacol, 2017, 812: 18-27. DOI: 10.1016/j.ejphar.2017.06.031.
    [16] YUAN PP, LI M, ZHANG Q, et al. 2-phenylacetamide separated from the seed of lepidium apetalum willd. inhibited renal fibrosis via MAPK pathway mediated RAAS and oxidative stress in SHR rats[J]. BMC Complement Med Ther, 2023, 23(1): 207. DOI: 10.1186/s12906-023-04012-w.
    [17] EPSTEIN M, KOVESDY CP, CLASE CM, et al. Aldosterone, mineralocorticoid receptor activation, and CKD: a review of evolving treatment paradigms[J]. Am J Kidney Dis, 2022, 80(5): 658-666. DOI: 10.1053/j.ajkd.2022.04.016.
    [18] YUAN X, WANG X, LI Y, et al. Aldosterone promotes renal interstitial fibrosis via the AIF-1/Akt/mTOR signaling pathway[J]. Mol Med Rep, 2019, 20(5): 4033-4044. DOI: 10.3892/mmr.2019.10680.
    [19] QIANG P, HAO J, YANG F, et al. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-β1 pathway in mice induced with aldosterone[J]. Front Immunol, 2022, 13: 948658. DOI: 10.3389/fimmu.2022.948658.
    [20] VALENTIJN FA, KNOPPERT SN, MARQUEZ-EXPOSITO L, et al. Cellular communication network 2 (connective tissue growth factor) aggravates acute DNA damage and subsequent DNA damage response-senescence-fibrosis following kidney ischemia reperfusion injury[J]. Kidney Int, 2022, 102(6): 1305-1319. DOI: 10.1016/j.kint.2022.06.030.
    [21] KNOPS N, RAMAZANI Y, DE LOOR H, et al. Tacrolimus induces a pro-fibrotic response in donor-derived human proximal tubule cells dependent on common variants of the CYP3A5 and ABCB1 genes[J]. Nephrol Dial Transplant, 2023, 38(3): 599-609. DOI: 10.1093/ndt/gfac237.
    [22] UME AC, WENEGIEME TY, SHELBY JN, et al. Tacrolimus induces fibroblast-to-myofibroblast transition via a TGF-β-dependent mechanism to contribute to renal fibrosis[J]. Am J Physiol Renal Physiol, 2023, 324(5): F433-F445. DOI: 10.1152/ajprenal.00226.2022.
    [23] LIU L, GUO J, PANG XL, et al. Exploration of the mechanism of NORAD activation of TGF-β1/Smad3 through miR-136-5p and promotion of tacrolimus-induced renal fibrosis[J]. Ren Fail, 2023, 45(1): 2147083. DOI: 10.1080/0886022X.2022.2147083.
    [24] BEN-DOV IZ, MUTHUKUMAR T, MOROZOV P, et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis[J]. Transplantation, 2012, 94(11): 1086-1094. DOI: 10.1097/TP.0b013e3182751efd.
    [25] ISHII Y, SAWADA T, KUBOTA K, et al. Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy[J]. Kidney Int, 2005, 67(1): 321-332. DOI: 10.1111/j.1523-1755.2005.00085.x.
    [26] LOUZADA RA, CORRE R, AMEZIANE EL HASSANI R, et al. NADPH oxidase DUOX1 sustains TGF-β1 signalling and promotes lung fibrosis[J]. Eur Respir J, 2021, 57(1): 1901949. DOI: 10.1183/13993003.01949-2019.
    [27] SHI Y, TAO M, CHEN H, et al. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis[J]. Kidney Int, 2023, 103(3): 544-564. DOI: 10.1016/j.kint.2022.11.027.
    [28] HEYLEN L, THIENPONT B, BUSSCHAERT P, et al. Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis[J]. Kidney Int, 2019, 96(5): 1195-1204. DOI: 10.1016/j.kint.2019.06.018.
    [29] BROOK NR, WHITE SA, WALLER JR, et al. Fibrosis-associated gene expression in renal transplant glomeruli after acute renal allograft rejection[J]. Br J Surg, 2003, 90(8): 1009-1014. DOI: 10.1002/bjs.4133.
    [30] PONTICELLI C, CAMPISE MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation[J]. Kidney Int, 2021, 100(3): 536-545. DOI: 10.1016/j.kint.2021.04.016.
    [31] SAYIN B, CANVER B, GURLEK DEMIRCI B, et al. Renin-angiotensin system blockage and avoiding high doses of calcineurin inhibitors prevent interstitial fibrosis and tubular atrophy in kidney transplant recipients[J]. Exp Clin Transplant, 2017, 15(Suppl 1): 32-36. DOI: 10.6002/ect.mesot2016.O19.
    [32] AKBARI A, FERGUSSON D, KOKOLO MB, et al. Spot urine protein measurements in kidney transplantation: a systematic review of diagnostic accuracy[J]. Nephrol Dial Transplant, 2014, 29(4): 919-926. DOI: 10.1093/ndt/gft520.
    [33] OLSON JD, TOOZE JA, BOURLAND DJ, et al. Measurement of renal cortical fibrosis by CT scan[J]. Res Diagn Interv Imaging, 2023, 5: 100024. DOI: 10.1016/j.redii.2023.100024.
    [34] HUA C, QIU L, ZHOU L, et al. Value of multiparametric magnetic resonance imaging for evaluating chronic kidney disease and renal fibrosis[J]. Eur Radiol, 2023, 33(8): 5211-5221. DOI: 10.1007/s00330-023-09674-1.
    [35] MAO W, DING X, DING Y, et al. Evaluation of interstitial fibrosis in chronic kidney disease by multiparametric functional MRI and histopathologic analysis[J]. Eur Radiol, 2023, 33(6): 4138-4147. DOI: 10.1007/s00330-022-09329-7.
    [36] 徐小龙, 刘丁, 刘永光, 等. 慢性移植肾纤维化诊断的研究进展[J]. 广东医学, 2014, 35(19): 3094-3096.

    XU XL, LIU D, LIU YG, et al. Research progress in the diagnosis of chronic transplanted kidney fibrosis[J]. Guangdong Med, 2014, 35(19): 3094-3096.
    [37] HUANG R, FU P, MA L. Kidney fibrosis: from mechanisms to therapeutic medicines[J]. Signal Transduct Target Ther, 2023, 8(1): 129. DOI: 10.1038/s41392-023-01379-7.
    [38] 王子杰. 肾移植后肾间质纤维化的诊断及治疗[J]. 肾脏病与透析肾移植杂志, 2014, 23(3): 279-282.

    WANG ZJ. Diagnosis and treatment of renal interstitial fibrosis after kidney transplantation[J]. Chin J Nephrol Dial Transplant, 2014, 23(3): 279-282.
    [39] NANKIVELL BJ, BORROWS RJ, FUNG CL, et al. Delta analysis of posttransplantation tubulointerstitial damage[J]. Transplantation, 2004, 78(3): 434-441. DOI: 10.1097/01.tp.0000128613.74683.d9.
    [40] CHEN L, LI X, DENG Y, et al. The PI3K-Akt-mTOR pathway mediates renal pericyte-myofibroblast transition by enhancing glycolysis through HKII[J]. J Transl Med, 2023, 21(1): 323. DOI: 10.1186/s12967-023-04167-7.
    [41] NISHIOKA S, ISHIMURA T, ENDO T, et al. Suppression of allograft fibrosis by regulation of mammalian target of rapamycin-related protein expression in kidney-transplanted recipients treated with everolimus and reduced tacrolimus[J]. Ann Transplant, 2021, 26: e926476. DOI: 10.12659/AOT.926476.
    [42] UME AC, WENEGIEME TY, WILLIAMS CR. Calcineurin inhibitors: a double-edged sword[J]. Am J Physiol Renal Physiol, 2021, 320(3): F336-F341. DOI: 10.1152/ajprenal.00262.2020.
    [43] SHIGEMATSU T, TAJIMA S, FU R, et al. The mTOR inhibitor everolimus attenuates tacrolimus-induced renal interstitial fibrosis in rats[J]. Life Sci, 2022, 288: 120150. DOI: 10.1016/j.lfs.2021.120150.
    [44] BARRERA-CHIMAL J, ESTRELA GR, LECHNER SM, et al. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling[J]. Kidney Int, 2018, 93(6): 1344-1355. DOI: 10.1016/j.kint.2017.12.016.
    [45] ZHANG Y, NAKANO D, GUAN Y, et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice[J]. Kidney Int, 2018, 94(3): 524-535. DOI: 10.1016/j.kint.2018.05.002.
    [46] 王珍, 曹博宁, 侯金易. 肾纤维化的治疗[J]. 家庭医学, 2022(6): 9-11.

    WANG Z, CAO BN, HOU JY. Treatment of renal fibrosis[J]. Fam Med, 2022(6): 9-11.
    [47] SUGIMOTO H, LEBLEU VS, BOSUKONDA D, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis[J]. Nat Med, 2012, 18(3): 396-404. DOI: 10.1038/nm.2629.
    [48] INOTANI S, TANIGUCHI Y, NAKAMURA K, et al. Knockout of Zeb2 ameliorates progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia-reperfusion injury[J]. Nephrol Dial Transplant, 2022, 37(3): 454-468. DOI: 10.1093/ndt/gfab311.
    [49] SHATI AA, ALKABLI J, ALFAIFI MY, et al. Comparison of the ameliorative roles of crab chitosan nanoparticles and mesenchymal stem cells against cisplatin-triggered nephrotoxicity[J]. Int J Biol Macromol, 2023, 242(Pt 4): 124985. DOI: 10.1016/j.ijbiomac.2023.124985.
    [50] CIANCI R, SIMEONI M, CIANCI E, et al. Stem cells in kidney ischemia: from inflammation and fibrosis to renal tissue regeneration[J]. Int J Mol Sci, 2023, 24(5): 4631. DOI: 10.3390/ijms24054631.
    [51] LI S, WANG Y, WANG Z, et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis[J]. Stem Cell Res Ther, 2021, 12(1): 27. DOI: 10.1186/s13287-020-02049-z.
    [52] MATHEW AP, UTHAMAN S, BAE EH, et al. Vimentin targeted nano-gene carrier for treatment of renal diseases[J]. J Korean Med Sci, 2021, 36(49): e333. DOI: 10.3346/jkms.2021.36.e333.
    [53] TANG TT, WANG B, LI ZL, et al. Kim-1 targeted extracellular vesicles: a new therapeutic platform for RNAi to treat AKI[J]. J Am Soc Nephrol, 2021, 32(10): 2467-2483. DOI: 10.1681/ASN.2020111561.
    [54] XIE ZY, DONG W, ZHANG L, et al. NFAT inhibitor 11R-VIVIT ameliorates mouse renal fibrosis after ischemia-reperfusion-induced acute kidney injury[J]. Acta Pharmacol Sin, 2022, 43(8): 2081-2093. DOI: 10.1038/s41401-021-00833-y.
    [55] ZHAO H, LUO X, ZHOU Z, et al. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats[J]. Kidney Int, 2014, 85(1): 112-123. DOI: 10.1038/ki.2013.334.
  • 加载中
图(1)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  142
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回