留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成人实体器官移植后糖尿病管理专家共识

毕艳, 鹿斌, 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 器官移植, 2023, 14(5): 623-642. doi: 10.3969/j.issn.1674-7445.2023110
引用本文: 毕艳, 鹿斌, 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 器官移植, 2023, 14(5): 623-642. doi: 10.3969/j.issn.1674-7445.2023110
BI Yan, LU Bin, Organ Transplantation and Rehabilitation Committee of Chinese Medical Association of Rehabilitation. Expert consensus on diabetes mellitus after solid organ transplantation in adults[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 623-642. doi: 10.3969/j.issn.1674-7445.2023110
Citation: BI Yan, LU Bin, Organ Transplantation and Rehabilitation Committee of Chinese Medical Association of Rehabilitation. Expert consensus on diabetes mellitus after solid organ transplantation in adults[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 623-642. doi: 10.3969/j.issn.1674-7445.2023110

成人实体器官移植后糖尿病管理专家共识

doi: 10.3969/j.issn.1674-7445.2023110
详细信息
    通讯作者:

    毕艳, Email:biyan@nju.edu.cn

    鹿斌, Email:binlu@fudan.edu.cn

  • 中图分类号: R617, R587.1

Expert consensus on diabetes mellitus after solid organ transplantation in adults

More Information
    Corresponding author: Bi Yan, Department of Endocrinology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China, Email: biyan@nju.edu.cnLu Bin, Department of Endocrinology, Huashan Hospital, Affiliated to Fudan University, Shanghai 200040, China, Email: binlu@fudan.edu.cn
  • 摘要: 移植后糖尿病(PTDM)是成人实体器官移植(SOT)后常见的内分泌代谢紊乱疾病,累及10%~40%的受者,严重威胁受者生存质量与长期存活。为进一步规范PTDM的诊治,相关专家依据国内外成人PTDM的研究进展并结合我国实际情况,对PTDM的流行病学、危险因素与发病机制、筛查与诊断、治疗、预防、心血管危险因素管理以及微血管并发症筛查等方面达成一致意见,提出指导建议。旨在规范化综合管理PTDM,以提高SOT受者的生存质量与长期存活。

     

  • 表  1  不同免疫抑制剂的主要机制及与PTDM发生风险的关系

    Table  1.   The main mechanisms of different immunosuppressors and their relationship with the risk of PTDM

    免疫抑制剂主要机制与PTDM发生风险的关系
    糖皮质激素刺激胰高糖素分泌,增加肝糖输出,这一效应呈剂量相关性[39],增加胰岛素抵抗并抑制胰岛素分泌,诱导胰岛细胞凋亡[40]泼尼松龙逐渐减量至5 mg/d有助于改善肾移植后胰岛素敏感性[41],糖皮质激素减撤方案可以作为降低PTDM风险的一种优选方案[42]
    CNI(他克莫司、环孢素)抑制钙调神经磷酸酶活性,抑制细胞质钙调神经磷酸酶-活化T细胞的核因子亚单位的去磷酸化。CNI下调胰岛素受体底物2表达[43],影响胰岛β细胞中胰岛素和细胞增殖基因的转录,引起血糖升高。环孢素和他克莫司还可以通过增加脂肪细胞表面的葡萄糖转运蛋白4内吞速率,降低葡萄糖转运蛋白4表达来抑制葡萄糖摄取,而不依赖于胰岛素信号传导[44]。他克莫司减少胰岛素分泌效应更强,与环孢素相比更易导致PTDM。肾移植后使用他克莫司治疗1年的PTDM发病风险是环孢素的2.7倍[45-48]CNI减量可以作为降低PTDM风险的措施,肾移植后PTDM患者可将他克莫司调整为环孢素以减少PTDM发生[46]
    mTORi(西罗莫司、依维莫司和贝拉西普)mTORi干扰胰岛素信号传导,加重胰岛素抵抗;同时具有抗增殖作用,抑制胰岛β细胞增殖,促进β细胞凋亡。西罗莫司促进胰岛素受体底物2的磷酸化,抑制β细胞分泌胰岛素[47]mTORi会增加PTDM发生风险,但较CNI略低[48]
    ATG和阿仑单抗ATG诱导促进Treg细胞增多[49]。阿仑单抗是靶向CD52特异性单克隆抗体,CD52富集于B和T淋巴细胞表面,阿仑单抗可诱导T和B淋巴细胞凋亡[50],对糖代谢无直接影响阿仑单抗或ATG诱导不增加PTDM风险[51]
    巴利昔单抗IL-2受体的单抗(抗CD25),可显著抑制IL-2介导的T淋巴细胞增殖。动物实验中表明,巴利昔单抗使用后诱导Treg细胞减少,出现胰岛炎、胰岛β细胞破坏及糖尿病发生[52]巴利昔单抗诱导发生PTDM 的风险增加[53]
    其他免疫抑制剂(麦考酚酸、硫唑嘌呤和咪唑立宾)抑制嘌呤核苷酸的生物合成发挥抗增殖、抗代谢作用,对糖代谢无直接影响麦考酚酸或硫唑嘌呤单独应用对PTDM无影响,联合用药目前证据尚不足[54];吗替麦考酚酯是常用麦考酚酸类药物,与其他免疫抑制剂联用时,减少CNI、类固醇药物等药物的剂量,间接降低SOT受者PTDM的风险[55];咪唑立宾与PTDM的关系尚无研究报道
      注:mTORi为哺乳动物雷帕霉素靶蛋白抑制剂;ATG为抗人胸腺细胞免疫球蛋白;IL-2为白细胞介素-2。
    下载: 导出CSV

    表  2  PTDM的诊断标准

    Table  2.   Diagnostic criteria for PTDM

    诊断标准静脉血浆葡萄糖或HbA1c水平
    典型糖尿病症状
    加上空腹血糖≥7.0 mmol/L
    或加上随机血糖≥11.1 mmol/L
    或加上OGTT 2 h血糖≥11.1 mmol/L
    或加上HbA1c≥6.5%a
    无糖尿病典型症状者,需改日复查确认
      注:诊断时机为移植术后病情稳定且免疫抑制剂维持日常剂量时。典型糖尿病症状包括烦渴多饮、多尿、多食、不明原因体重下降;随机血糖指不考虑上次用餐时间,一天中任意时间的血糖,不能用来诊断空腹血糖受损或糖耐量减低;空腹状态指至少8 h没有进食热量。a移植术后1年内不建议单独使用HbA1c来诊断PTDM。
    下载: 导出CSV

    表  3  糖代谢状态分类

    Table  3.   Classification of glucose metabolism status

    糖代谢状态静脉血浆葡萄糖(mmol/L)
    FPG2 hPG
    正常血糖<6.1<7.8
    空腹血糖受损6.1≤FPG<7.0<7.8
    糖耐量减低<6.17.8≤2 hPG<11.1
    糖调节受损<7.07.8≤2 hPG<11.1
    糖尿病≥7.0≥11.1
      注:2 hPG为糖负荷后2 h血糖。FPG正常参考范围下限通常为3.9 mmol/L。
    下载: 导出CSV

    表  4  治疗PTDM非胰岛素类降糖药物的安全性、有效性、与免疫抑制剂的相互作用以及注意事项

    Table  4.   Safety, effectiveness, interaction with immunosuppressors and precautions of non-insulin hypoglycemic drugs for PTDM

    药物
    种类
    常用代表
    药物
    有效性a安全性药物相互
    作用
    心肾获益主要不良
    反应
    注意事项
    双胍类 二甲双胍 强效 循证证据较多,主要来源于肾移植受者,安全、优选用药。
    (1)肾移植:肾功能稳定情况下安全,降低全因死亡率、感染相关死亡率、恶性肿瘤相关死亡率[76-78];(2)肝、心、肺移植:证据缺乏
    降低超重T2DM患者心血管风险,SOT受者获益情况不明 胃肠道反应常见,乳酸酸中毒罕见 注意监测肾功能,禁用于eGFR<
    45 mL/ (min·1.73 m2 ) ;
    肝功能不全、严重感染、缺氧或接受大手术的患者禁用
    DPP-4i 西格列汀、沙格列汀、利格列汀、维格列汀、阿格列汀 中效 循证证据相对较少,安全。
    (1)肾移植:安全,耐受性良好[79-85];(2)心移植:安全,对体重无影响[86]; (3)肝、肺移植:证据缺乏
    西格列汀和CsA,维格列汀和TAC可能存在DDI T2DM人群中性,沙格列汀可能增加心力衰竭住院风险;SOT受者暂无依据 肾功能不全者需根据eGFR调整用量(利格列汀除外)
    α-糖苷酶抑制剂 阿卡波糖、伏格列波糖、米格列醇 中效 循证证据缺乏,但国内专家有限的使用经验提示安全有效 循证证据缺乏 T2DM人群中性,SOT受者暂无依据 胃肠道反应常见 严重肝功能或肾功能不全、肠粘连、肠梗阻病史患者禁用
    磺脲类 格列本脲、格列齐特、格列美脲、格列喹酮、格列吡嗪 强效 循证证据相对少,但临床使用经验较多。
    (1)肾移植:耐受性良好,存在一定程度低血糖风险[85, 87]
    (2)肝、心、肺移植:证据缺乏
    格列本脲、格列喹酮与CsA可能存在DDI T2DM人群中性,SOT受者暂无依据 低血糖、体重增加 eGFR下降者使用时低血糖风险增加;严重肝或肾功能不全、糖尿病急性并发症时禁用
    噻唑烷二酮类 吡格列酮、罗格列酮 中效 循证证据较少。
    (1)肾移植:安全,耐受性良好[88-89]
    (2)肝移植:样本量少,短期应用安全[89];(3)心、肺移植:证据缺乏
    吡格列酮与CNI无DDI T2DM人群心血管不良事件潜在获益(吡格列酮);心力衰竭风险增加;SOT受者暂无依据 体重增加、水肿、贫血、骨折等 心力衰竭、活动性肝病、严重骨质疏松和有病理性骨折病史的患者禁用
    格列奈类 瑞格列奈、那格列奈、米格列奈钙 强效 循证证据较少。(1)肾移植:安全,耐受性良好[85, 90-91];(2)肝、心、肺移植:证据缺乏 和CsA可能存在DDI T2DM人群中性;SOT受者暂无依据 低血糖、体重增加 可在肾功能不全患者中使用;与CsA联用时注意低血糖风险
    SGLT2i 达格列净、恩格列净、卡格列净、恒格列净、艾托格列净 中-强效 循证证据较少。
    (1)肾移植:安全,耐受性良好,减少胰岛素使用剂量,小样本研究中未发现泌尿系统感染风险
    增加[92-94];(2)心脏移植:小样本研究发现降低体重、血压,减少利尿剂剂量,耐受性良好,偶发尿路感染[95-96],部分RCT研究进行中[97];(3)肝、肺移植:证据缺乏
    与CNI、mTORi可能存在DDI T2DM人群获益,SOT受者使用大样本循证证据缺乏,小样本研究提示可能降低尿蛋白排泄;心脏移植PTDM者可能存在潜在获益 泌尿系统和生殖系统感染、血容量不足;糖尿病酮症酸中毒罕见 不建议用于eGFR<45 mL/(min·1.73 m2)患者
    GLP-1RA 日制剂:利拉鲁肽、艾塞那肽、贝那鲁肽、利司那肽;周制剂:度拉糖肽、洛塞那肽、艾塞那肽周制剂、司美格鲁肽 强效 循证证据较少。
    (1)肾、肝、心移植:降低体重、体重指数、胰岛素剂量,未增加心血管疾病、移植物失功或全因死亡等风险[98-99];(2)肺移植:证据缺乏
    T2DM人群获益,SOT受者大样本循证证据缺乏,获益情况不明 胃肠道反应 禁用于有甲状腺髓样癌病史或家族史的患者以及2型多发性内分泌肿瘤综合征患者;急性胰腺炎病史者慎用;严重高甘油三酯血症者建议降脂治疗后使用;使用司美格鲁肽时需注意监测糖尿病视网膜病变;需注意GLP-1RA致胃排空延迟可能影响免疫抑制剂的吸收
      注:CsA为环孢素;TAC为他克莫司;DDI为药物相互作用;mTORi为哺乳动物雷帕霉素靶蛋白抑制剂;eGFR为估算肾小球滤过率;RCT为随机对照试验。 a有效性依据T2DM患者使用的效果评价。
    下载: 导出CSV
  • [1] JENSSEN T, HARTMANN A. Post-transplant diabetes mellitus in patients with solid organ transplants[J]. Nat Rev Endocrinol, 2019, 15(3): 172-188. DOI: 10.1038/s41574-018-0137-7.
    [2] DAVIDSON J, WILKINSON A, DANTAL J, et al. New-onset diabetes after transplantation: 2003 international consensus guidelines. proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003[J]. Transplantation, 2003, 75(10 Suppl): SS3- SS24. DOI: 10.1097/01.TP.0000069952.49242.3E.
    [3] SHARIF A, HECKING M, DE VRIES AP, et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions[J]. Am J Transplant, 2014, 14(9): 1992-2000. DOI: 10.1111/ajt.12850.
    [4] PORRINI EL, DÍAZ JM, MORESO F, et al. Clinical evolution of post-transplant diabetes mellitus[J]. Nephrol Dial Transplant, 2016, 31(3): 495-505. DOI: 10.1093/ndt/gfv368.
    [5] MOON JI, BARBEITO R, FARADJI RN, et al. Negative impact of new-onset diabetes mellitus on patient and graft survival after liver transplantation: long-term follow up[J]. Transplantation, 2006, 82(12): 1625-1628. DOI: 10.1097/01.tp.0000250361.60415.96.
    [6] BHAT M, USMANI SE, AZHIE A, et al. Metabolic consequences of solid organ transplantation[J]. Endocr Rev, 2021, 42(2): 171-197. DOI: 10.1210/endrev/bnaa030.
    [7] LIANG J, LV C, CHEN M, et al. Effects of preoperative hepatitis B virus infection, hepatitis C virus infection, and coinfection on the development of new-onset diabetes after kidney transplantation[J]. J Diabetes, 2019, 11(5): 370-378. DOI: 10.1111/1753-0407.12853.
    [8] XU J, XU L, WEI X, et al. Incidence and risk factors of posttransplantation diabetes mellitus in living donor kidney transplantation: a single-center retrospective study in China[J]. Transplant Proc, 2018, 50(10): 3381-3385. DOI: 10.1016/j.transproceed.2018.08.007.
    [9] 陈敏灵, 张尧, 于明香, 等. 肾移植术后糖尿病的发病及其危险因素分析[J]. 中华内分泌代谢杂志, 2013, 29(9): 750-755. DOI: 10.3760/cma.j.issn.1000-6699.2013.09.004.

    CHEN ML, ZHANG Y, YU MX, et al. An analysis on the prevalence and risk factors of post-transplant diabetes mellitus after renal transplantation[J]. Chin J Endocrinol Metab, 2013, 29(9): 750-755. DOI: 10.3760/cma.j.issn.1000-6699.2013.09.004.
    [10] LING Q, XU X, XIE H, et al. New-onset diabetes after liver transplantation: a national report from China Liver Transplant Registry[J]. Liver Int, 2016, 36(5): 705-712. DOI: 10.1111/liv.13042.
    [11] ZHAO T, ZHAO Y, ZONG A, et al. Association of body mass index and fasting plasma glucose concentration with post-transplantation diabetes mellitus in Chinese heart transplant recipients[J]. J Int Med Res, 2020, 48(3): 300060520910629. DOI: 10.1177/0300060520910629.
    [12] 章保勇, 胡盛寿, 黄洁, 等. 心脏移植受者移植后新发糖尿病的危险因素分析[J]. 中华器官移植杂志, 2014, 35(4): 221-224. DOI: 10.3760/cma.j.issn.0254-1785.2014.04.007.

    ZHANG BY, HU SS, HUANG J, et al. Incidence and risk factors of post-transplant diabetes mellitus in heart recipients[J]. Chin J Organ Transplant, 2014, 35(4): 221-224. DOI: 10.3760/cma.j.issn.0254-1785.2014.04.007.
    [13] EIDE IA, HALDEN TA, HARTMANN A, et al. Mortality risk in post-transplantation diabetes mellitus based on glucose and HbA1c diagnostic criteria[J]. Transpl Int, 2016, 29(5): 568-578. DOI: 10.1111/tri.12757.
    [14] HACKMAN KL, SNELL GI, BACH LA. Poor glycemic control is associated with decreased survival in lung transplant recipients[J]. Transplantation, 2017, 101(9): 2200-2206. DOI: 10.1097/TP.0000000000001555.
    [15] D'AVOLA D, CUERVAS-MONS V, MARTÍ J, et al. Cardiovascular morbidity and mortality after liver transplantation: the protective role of mycophenolate mofetil[J]. Liver Transpl, 2017, 23(4): 498-509. DOI: 10.1002/lt.24738.
    [16] ROCCARO GA, GOLDBERG DS, HWANG WT, et al. Sustained posttransplantation diabetes is associated with long-term major cardiovascular events following liver transplantation[J]. Am J Transplant, 2018, 18(1): 207-215. DOI: 10.1111/ajt.14401.
    [17] SHIVASWAMY V, BOERNER B, LARSEN J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes[J]. Endocr Rev, 2016, 37(1): 37-61. DOI: 10.1210/er.2015-1084.
    [18] FENG KY, HENRICKSEN EJ, WAYDA B, et al. Impact of diabetes mellitus on clinical outcomes after heart transplantation[J]. Clin Transplant, 2021, 35(11): e14460. DOI: 10.1111/ctr.1446.
    [19] KIM HJ, JUNG SH, KIM JJ, et al. New-onset diabetes mellitus after heart transplantation- incidence, risk factors and impact on clinical outcome[J]. Circ J, 2017, 81(6): 806-814. DOI: 10.1253/circj.CJ-16-0963.
    [20] VEST AR, CHERIKH WS, NOREEN SM, et al. New-onset diabetes mellitus after adult heart transplantation and the risk of renal dysfunction or mortality[J]. Transplantation, 2022, 106(1): 178-187. DOI: 10.1097/TP.0000000000003647.
    [21] CHO MS, CHOI HI, KIM IO, et al. The clinical course and outcomes of post-transplantation diabetes mellitus after heart transplantation[J]. J Korean Med Sci, 2012, 27(12): 1460-1467. DOI: 10.3346/jkms.2012.27.12.1460.
    [22] MORO JA, MARTÍNEZ-DOLZ L, ALMENAR L, et al. Impact of diabetes mellitus on heart transplant recipients[J]. Rev Esp Cardiol, 2006, 59(10): 1033-1037. DOI: 10.1157/13093980.
    [23] KIROV H, MOSCHOVAS A, CALDONAZO T, et al. Diabetes is an independent risk factor for cancer after heart and/or lung transplantation[J]. J Clin Med, 2022, 11(14): 4127. DOI: 10.3390/jcm11144127.
    [24] HACKMAN KL, BAILEY MJ, SNELL GI, et al. Diabetes is a major risk factor for mortality after lung transplantation[J]. Am J Transplant, 2014, 14(2): 438-445. DOI: 10.1111/ajt.12561.
    [25] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.

    Branch of Diabetes of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) [J]. Chin J Diabetes, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
    [26] CHEUNGPASITPORN W, THONGPRAYOON C, VIJAYVARGIYA P, et al. The risk for new-onset diabetes mellitus after kidney transplantation in patients with autosomal dominant polycystic kidney disease: a systematic review and meta-analysis[J]. Can J Diabetes, 2016, 40(6): 521-528. DOI: 10.1016/j.jcjd.2016.03.001.
    [27] SHAH T, KASRAVI A, HUANG E, et al. Risk factors for development of new-onset diabetes mellitus after kidney transplantation[J]. Transplantation, 2006, 82(12): 1673-1676. DOI: 10.1097/01.tp.0000250756.66348.9a.
    [28] FABRIZI F, MARTIN P, DIXIT V, et al. Post-transplant diabetes mellitus and HCV seropositive status after renal transplantation: meta-analysis of clinical studies[J]. Am J Transplant, 2005, 5(10): 2433-2440. DOI: 10.1111/j.1600-6143.2005.01040.x.
    [29] PRASAD N, GURJER D, BHADAURIA D, et al. Is basiliximab induction, a novel risk factor for new onset diabetes after transplantation for living donor renal allograft recipients? [J]. Nephrology (Carlton), 2014, 19(4): 244-250. DOI: 10.1111/nep.12209.
    [30] BAID S, COSIMI AB, FARRELL ML, et al. Posttransplant diabetes mellitus in liver transplant recipients: risk factors, temporal relationship with hepatitis C virus allograft hepatitis, and impact on mortality[J]. Transplantation, 2001, 72(6): 1066-1072. DOI: 10.1097/00007890-200109270-00015.
    [31] CHEN T, JIA H, LI J, et al. New onset diabetes mellitus after liver transplantation and hepatitis C virus infection: meta-analysis of clinical studies[J]. Transpl Int, 2009, 22(4): 408-415. DOI: 10.1111/j.1432-2277.2008.00804.x.
    [32] SABHARWAL S, DELGADO-BORREGO A, CHUNG RT. Extrahepatic hepatitis C virus after transplantation: diabetes and renal dysfunction[J]. Liver Transpl, 2008, 14(Suppl 2): S51-S57. DOI: 10.1002/lt.21613.
    [33] YOUNOSSI Z, STEPANOVA M, SAAB S, et al. The association of hepatitis C virus infection and post-liver transplant diabetes: data from 17 000 HCV-infected transplant recipients[J]. Aliment Pharmacol Ther, 2015, 41(2): 209-217. DOI: 10.1111/apt.13027.
    [34] HANDISURYA A, KERSCHER C, TURA A, et al. Conversion from tacrolimus to cyclosporine a improves glucose tolerance in HCV-positive renal transplant recipients[J]. PLoS One, 2016, 11(1): e0145319. DOI: 10.1371/journal.pone.0145319.
    [35] SALIBA F, LAKEHAL M, PAGEAUX GP, et al. Risk factors for new-onset diabetes mellitus following liver transplantation and impact of hepatitis C infection : an observational multicenter study[J]. Liver Transpl, 2007, 13(1): 136-144. DOI: 10.1002/lt.21010.
    [36] TOSHIMA T, YOSHIZUMI T, INOKUCHI S, et al. Risk factors for the metabolic syndrome components of hypertension, diabetes mellitus, and dyslipidemia after living donor liver transplantation[J]. HPB (Oxford), 2020, 22(4): 511-520. DOI: 10.1016/j.hpb.2019.08.008.
    [37] XUE M, LV C, CHEN X, et al. Donor liver steatosis: a risk factor for early new-onset diabetes after liver transplantation[J]. J Diabetes Investig, 2017, 8(2): 181-187. DOI: 10.1111/jdi.12560.
    [38] SHAKED A, LOZA BL, VAN LOON E, et al. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes[J]. Nat Med, 2022, 28(5): 999-1005. DOI: 10.1038/s41591-022-01758-7.
    [39] HUSCHER D, THIELE K, GROMNICA-IHLE E, et al. Dose-related patterns of glucocorticoid-induced side effects[J]. Ann Rheum Dis, 2009, 68(7): 1119-1124. DOI: 10.1136/ard.2008.092163.
    [40] QI D, RODRIGUES B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism[J]. Am J Physiol Endocrinol Metab, 2007, 292(3): E654-E667. DOI: 10.1152/ajpendo.00453.2006.
    [41] MIDTVEDT K, HJELMESAETH J, HARTMANN A, et al. Insulin resistance after renal transplantation: the effect of steroid dose reduction and withdrawal[J]. J Am Soc Nephrol, 2004, 15(12): 3233-3239. DOI: 10.1097/01.ASN.0000145435.80005.1E.
    [42] MOURAD G, GLYDA M, ALBANO L, et al. Incidence of posttransplantation diabetes mellitus in de novo kidney transplant recipients receiving prolonged-release tacrolimus-based immunosuppression with 2 different corticosteroid minimization strategies: ADVANCE, a randomized controlled trial[J]. Transplantation, 2017, 101(8): 1924-1934. DOI: 10.1097/TP.0000000000001453.
    [43] CHAKKERA HA, KUDVA Y, KAPLAN B. Calcineurin inhibitors: pharmacologic mechanisms impacting both insulin resistance and insulin secretion leading to glucose dysregulation and diabetes mellitus[J]. Clin Pharmacol Ther, 2017, 101(1): 114-120. DOI: 10.1002/cpt.546.
    [44] PEREIRA MJ, PALMING J, RIZELL M, et al. Cyclosporine A and tacrolimus reduce the amount of GLUT4 at the cell surface in human adipocytes: increased endocytosis as a potential mechanism for the diabetogenic effects of immunosuppressive agents[J]. J Clin Endocrinol Metab, 2014, 99(10): E1885-E1894. DOI: 10.1210/jc.2014-1266.
    [45] VINCENTI F, FRIMAN S, SCHEUERMANN E, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus[J]. Am J Transplant, 2007, 7(6): 1506-1514. DOI: 10.1111/j.1600-6143.2007.01749.x.
    [46] TORRES A, HERNÁNDEZ D, MORESO F, et al. Randomized controlled trial assessing the impact of tacrolimus versus cyclosporine on the incidence of posttransplant diabetes mellitus[J]. Kidney Int Rep, 2018, 3(6): 1304-1315. DOI: 10.1016/j.ekir.2018.07.009.
    [47] WISSING KM, ABRAMOWICZ D, WEEKERS L, et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation[J]. Am J Transplant, 2018, 18(7): 1726-1734. DOI: 10.1111/ajt.14665.
    [48] LIU J, LIU D, LI J, et al. Efficacy and safety of everolimus for maintenance immunosuppression of kidney transplantation: a meta-analysis of randomized controlled trials[J]. PLoS One, 2017, 12(1): e0170246. DOI: 10.1371/journal.pone.0170246.
    [49] JONES-HUGHES T, SNOWSILL T, HAASOVA M, et al. Immunosuppressive therapy for kidney transplantation in adults: a systematic review and economic model[J]. Health Technol Assess, 2016, 20(62): 1-594. DOI: 10.3310/hta20620.
    [50] CREPIN T, CARRON C, ROUBIOU C, et al. ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients[J]. Am J Transplant, 2015, 15(4): 1028-1038. DOI: 10.1111/ajt.13092.
    [51] BAKER D, HERROD SS, ALVAREZ-GONZALEZ C, et al. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab[J]. JAMA Neurol, 2017, 74(8): 961-969. DOI: 10.1001/jamaneurol.2017.0676.
    [52] ZHENG J, SONG W. Alemtuzumab versus antithymocyte globulin induction therapies in kidney transplantation patients: a systematic review and meta-analysis of randomized controlled trials[J]. Medicine (Baltimore), 2017, 96(28): e7151. DOI: 10.1097/MD.0000000000007151.
    [53] SETOGUCHI R, HORI S, TAKAHASHI T, et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization[J]. J Exp Med, 2005, 201(5): 723-735. DOI: 10.1084/jem.20041982.
    [54] AASEBØ W, MIDTVEDT K, VALDERHAUG TG, et al. Impaired glucose homeostasis in renal transplant recipients receiving basiliximab[J]. Nephrol Dial Transplant, 2010, 25(4): 1289-1293. DOI: 10.1093/ndt/gfp617.
    [55] AXELROD DA, CHEUNGPASITPORN W, BUNNAPRADIST S, et al. Posttransplant diabetes mellitus and immunosuppression selection in older and obese kidney recipients[J]. Kidney Med, 2021, 4(1): 100377. DOI: 10.1016/j.xkme.2021.08.012.
    [56] SALIBA F, ROSTAING L, GUGENHEIM J, et al. Corticosteroid-sparing and optimization of mycophenolic acid exposure in liver transplant recipients receiving mycophenolate mofetil and tacrolimus: a randomized, multicenter study[J]. Transplantation, 2016, 100(8): 1705-1713. DOI: 10.1097/TP.0000000000001228.
    [57] SCHWEER T, GWINNER W, SCHEFFNER I, et al. High impact of rejection therapy on the incidence of post-transplant diabetes mellitus after kidney transplantation[J]. Clin Transplant, 2014, 28(4): 512-519. DOI: 10.1111/ctr.12329.
    [58] MONTORI VM, BASU A, ERWIN PJ, et al. Posttransplantation diabetes: a systematic review of the literature[J]. Diabetes Care, 2002, 25(3): 583-592. DOI: 10.2337/diacare.25.3.583.
    [59] HJELMESAETH J, SAGEDAL S, HARTMANN A, et al. Asymptomatic cytomegalovirus infection is associated with increased risk of new-onset diabetes mellitus and impaired insulin release after renal transplantation[J]. Diabetologia, 2004, 47(9): 1550-1556. DOI: 10.1007/s00125-004-1499-z.
    [60] JIMÉNEZ-PÉREZ M, GONZÁLEZ-GRANDE R, OMONTE GUZMÁN E, et al. Metabolic complications in liver transplant recipients[J]. World J Gastroenterol, 2016, 22(28): 6416-6423. DOI: 10.3748/wjg.v22.i28.6416.
    [61] LECRONIER M, TASHK P, TAMZALI Y, et al. Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients[J]. PLoS One, 2020, 15(1): e0227373. DOI: 10.1371/journal.pone.0227373.
    [62] FAUCHER Q, JARDOU M, BROSSIER C, et al. Is intestinal dysbiosis-associated with immunosuppressive therapy a key factor in the pathophysiology of post-transplant diabetes mellitus? [J]. Front Endocrinol (Lausanne), 2022, 13: 898878. DOI: 10.3389/fendo.2022.898878.
    [63] VAN DER BURGH AC, MOES A, KIEBOOM BCT, et al. Serum magnesium, hepatocyte nuclear factor 1β genotype and post-transplant diabetes mellitus: a prospective study[J]. Nephrol Dial Transplant, 2020, 35(1): 176-183. DOI: 10.1093/ndt/gfz145.
    [64] SCHWAIGER E, KRENN S, KURNIKOWSKI A, et al. Early postoperative basal insulin therapy versus standard of care for the prevention of diabetes mellitus after kidney transplantation: a multicenter randomized trial[J]. J Am Soc Nephrol, 2021, 32(8): 2083-2098. DOI: 10.1681/ASN.2021010127.
    [65] DOS SANTOS Q, HORNUM M, TERRONES-CAMPOS C, et al. Posttransplantation diabetes mellitus among solid organ recipients in a Danish cohort[J]. Transpl Int, 2022, 35: 10352. DOI: 10.3389/ti.2022.10352.
    [66] IQBAL A, ZHOU K, KASHYAP SR, et al. Early post-renal transplant hyperglycemia[J]. J Clin Endocrinol Metab, 2022, 107(2): 549-562. DOI: 10.1210/clinem/dgab697.
    [67] CONTE C, MAGGIORE U, CAPPELLI G, et al. Supporting physicians in the management of metabolic alterations in adult kidney transplant recipients: a comment on the joint position statement of the Italian Society of Nephrology (SIN), the Italian Society for Organ Transplantation (SITO) and the Italian Diabetes Society (SID) [J]. J Nephrol, 2020, 33(5): 887-893. DOI: 10.1007/s40620-020-00839-5.
    [68] USSIF AM, ÅSBERG A, HALDEN TAS, et al. Validation of diagnostic utility of fasting plasma glucose and HbA1c in stable renal transplant recipients one year after transplantation[J]. BMC Nephrol, 2019, 20(1): 12. DOI: 10.1186/s12882-018-1171-3.
    [69] YATES CJ, FOURLANOS S, COLMAN PG, et al. Divided dosing reduces prednisolone-induced hyperglycaemia and glycaemic variability: a randomized trial after kidney transplantation[J]. Nephrol Dial Transplant, 2014, 29(3): 698-705. DOI: 10.1093/ndt/gft377.
    [70] BURT MG, ROBERTS GW, AGUILAR-LOZA NR, et al. Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD[J]. J Clin Endocrinol Metab, 2011, 96(6): 1789-1796. DOI: 10.1210/jc.2010-2729.
    [71] AOUAD LJ, CLAYTON P, WYBURN KR, et al. Evolution of glycemic control and variability after kidney transplant[J]. Transplantation, 2018, 102(9): 1563-1568. DOI: 10.1097/TP.0000000000002155.
    [72] YATES CJ, FOURLANOS S, COLMAN PG, et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin[J]. Transplantation, 2013, 96(8): 726-731. DOI: 10.1097/TP.0b013e3182a012f3.
    [73] L. 凯萨琳·马汉. Krause营养诊疗学[M]. 杜寿玢, 陈伟, 译, 13版. 北京: 人民卫生出版社, 2017.
    [74] 中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(10): 936-948. DOI: 10.3760/cma.j.cn115791-20210810-00436.

    Branch of Diabetes of Chinese Medical Association. Clinical application guideline for blood glucose monitoring in China (2021 edition) [J]. Chin J Diabetes, 2021, 13(10): 936-948. DOI: 10.3760/cma.j.cn115791-20210810-00436.
    [75] CHOWDHURY TA, WAHBA M, MALLIK R, et al. Association of British Clinical Diabetologists and Renal Association guidelines on the detection and management of diabetes post solid organ transplantation[J]. Diabet Med, 2021, 38(6): e14523. DOI: 10.1111/dme.14523.
    [76] VON VISGER JR, GUNAY Y, ANDREONI KA, et al. The risk of recurrent IgA nephropathy in a steroid-free protocol and other modifying immunosuppression[J]. Clin Transplant, 2014, 28(8): 845-854. DOI: 10.1111/ctr.12389.
    [77] VEST LS, KORAISHY FM, ZHANG Z, et al. Metformin use in the first year after kidney transplant, correlates, and associated outcomes in diabetic transplant recipients: a retrospective analysis of integrated registry and pharmacy claims data[J]. Clin Transplant, 2018, 32(8): e13302. DOI: 10.1111/ctr.13302.
    [78] RAM E, LAVEE J, TENENBAUM A, et al. Metformin therapy in patients with diabetes mellitus is associated with a reduced risk of vasculopathy and cardiovascular mortality after heart transplantation[J]. Cardiovasc Diabetol, 2019, 18(1): 118. DOI: 10.1186/s12933-019-0925-y.
    [79] HAIDINGER M, WERZOWA J, HECKING M, et al. Efficacy and safety of vildagliptin in new-onset diabetes after kidney transplantation--a randomized, double-blind, placebo-controlled trial[J]. Am J Transplant, 2014, 14(1): 115-123. DOI: 10.1111/ajt.12518.
    [80] GUELER I, MUELLER S, HELMSCHROTT M, et al. Effects of vildagliptin (Galvus®) therapy in patients with type 2 diabetes mellitus after heart transplantation[J]. Drug Des Devel Ther, 2013, 7: 297-303. DOI: 10.2147/DDDT.S43092.
    [81] STRØM HALDEN TA, ÅSBERG A, VIK K, et al. Short-term efficacy and safety of sitagliptin treatment in long-term stable renal recipients with new-onset diabetes after transplantation[J]. Nephrol Dial Transplant, 2014, 29(4): 926-933. DOI: 10.1093/ndt/gft536.
    [82] BOERNER BP, MILES CD, SHIVASWAMY V. Efficacy and safety of sitagliptin for the treatment of new-onset diabetes after renal transplantation[J]. Int J Endocrinol, 2014: 617638. DOI: 10.1155/2014/617638.
    [83] BAE J, LEE MJ, CHOE EY, et al. Effects of dipeptidyl peptidase-4 inhibitors on hyperglycemia and blood cyclosporine levels in renal transplant patients with diabetes: a pilot study[J]. Endocrinol Metab (Seoul), 2016, 31(1): 161-167. DOI: 10.3803/EnM.2016.31.1.161.
    [84] SOLIMAN AR, FATHY A, KHASHAB S, et al. Sitagliptin might be a favorable antiobesity drug for new onset diabetes after a renal transplant[J]. Exp Clin Transplant, 2013, 11(6): 494-498. DOI: 10.6002/ect.2013.0018.
    [85] GUARDADO-MENDOZA R, CÁZARES-SÁNCHEZ D, EVIA-VISCARRA ML, et al. Linagliptin plus insulin for hyperglycemia immediately after renal transplantation: a comparative study[J]. Diabetes Res Clin Pract, 2019, 156: 107864. DOI: 10.1016/j.diabres.2019.107864.
    [86] HAIDINGER M, ANTLANGER M, KOPECKY C, et al. Post-transplantation diabetes mellitus: evaluation of treatment strategies[J]. Clin Transplant, 2015, 29(5): 415-424. DOI: 10.1111/ctr.12541.
    [87] TÜRK T, PIETRUCK F, DOLFF S, et al. Repaglinide in the management of new-onset diabetes mellitus after renal transplantation[J]. Am J Transplant, 2006, 6(4): 842-846. DOI: 10.1111/j.1600-6143.2006.01250.x.
    [88] KAJOSAARI LI, NIEMI M, NEUVONEN M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide[J]. Clin Pharmacol Ther, 2005, 78(4): 388-399. DOI: 10.1016/j.clpt.2005.07.005.
    [89] LUTHER P, BALDWIN D JR. Pioglitazone in the management of diabetes mellitus after transplantation[J]. Am J Transplant, 2004, 4(12): 2135-2138. DOI: 10.1111/j.1600-6143.2004.00613.x.
    [90] WERZOWA J, HECKING M, HAIDINGER M, et al. Vildagliptin and pioglitazone in patients with impaired glucose tolerance after kidney transplantation: a randomized, placebo-controlled clinical trial[J]. Transplantation, 2013, 95(3): 456-462. DOI: 10.1097/TP.0b013e318276a20e.
    [91] HEERSPINK HJ, PERKINS BA, FITCHETT DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications[J]. Circulation, 2016, 134(10): 752-772. DOI: 10.1161/CIRCULATIONAHA.116.021887.
    [92] NEAL B, PERKOVIC V, MATTHEWS DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(21): 2099. DOI: 10.1056/NEJMc1712572.
    [93] RAJASEKERAN H, KIM SJ, CARDELLA CJ, et al. Use of canagliflozin in kidney transplant recipients for the treatment of type 2 diabetes: a case series[J]. Diabetes Care, 2017, 40(7): e75-e76. DOI: 10.2337/dc17-0237.
    [94] MAHLING M, SCHORK A, NADALIN S, et al. Sodium-glucose cotransporter 2 (SGLT2) inhibition in kidney transplant recipients with diabetes mellitus[J]. Kidney Blood Press Res, 2019, 44(5): 984-992. DOI: 10.1159/000501854.
    [95] SONG CC, BROWN A, WINSTEAD R, et al. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients[J]. Endocrinol Diabetes Metab, 2020, 4(2): e00185. DOI: 10.1002/edm2.185.
    [96] MUIR CA, GREENFIELD JR, MACDONALD PS. Empagliflozin in the management of diabetes mellitus after cardiac transplantation[J]. J Heart Lung Transplant, 2017, 36(8): 914-916. DOI: 10.1016/j.healun.2017.05.005.
    [97] CEHIC MG, MUIR CA, GREENFIELD JR, et al. Efficacy and safety of empagliflozin in the management of diabetes mellitus in heart transplant recipients[J]. Transplant Direct, 2019, 5(5): e450. DOI: 10.1097/TXD.0000000000000885.
    [98] SCHWAIGER E, BURGHART L, SIGNORINI L, et al. Empagliflozin in posttransplantation diabetes mellitus: a prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety[J]. Am J Transplant, 2019, 19(3): 907-919. DOI: 10.1111/ajt.15223.
    [99] HALDEN TAS, KVITNE KE, MIDTVEDT K, et al. Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus[J]. Diabetes Care, 2019, 42(6): 1067-1074. DOI: 10.2337/dc19-0093.
    [100] KRISTENSEN SL, RØRTH R, JHUND PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol, 2019, 7(10): 776-785. DOI: 10.1016/S2213-8587(19)30249-9.
    [101] VANHOVE T, REMIJSEN Q, KUYPERS D, et al. Drug-drug interactions between immunosuppressants and antidiabetic drugs in the treatment of post-transplant diabetes mellitus[J]. Transplant Rev (Orlando), 2017, 31(2): 69-77. DOI: 10.1016/j.trre.2016.09.001.
    [102] SINGH P, TAUFEEQ M, PESAVENTO TE, et al. Comparison of the glucagon-like-peptide-1 receptor agonists dulaglutide and liraglutide for the management of diabetes in solid organ transplant: a retrospective study[J]. Diabetes Obes Metab, 2020, 22(5): 879-884. DOI: 10.1111/dom.13964.
    [103] HALDEN TA, EGELAND EJ, ÅSBERG A, et al. GLP-1 restores altered insulin and glucagon secretion in posttransplantation diabetes[J]. Diabetes Care, 2016, 39(4): 617-624. DOI: 10.2337/dc15-2383.
    [104] LIOU JH, LIU YM, CHEN CH. Management of diabetes mellitus with glucagonlike peptide-1 agonist liraglutide in renal transplant recipients: a retrospective study[J]. Transplant Proc, 2018, 50(8): 2502-2505. DOI: 10.1016/j.transproceed.2018.03.087.
    [105] SINGH P, PESAVENTO TE, WASHBURN K, et al. Largest single-centre experience of dulaglutide for management of diabetes mellitus in solid organ transplant recipients[J]. Diabetes Obes Metab, 2019, 21(4): 1061-1065. DOI: 10.1111/dom.13619.
    [106] STEPHEN J, ANDERSON-HAAG TL, GUSTAFSON S, et al. Metformin use in kidney transplant recipients in the United States: an observational study[J]. Am J Nephrol, 2014, 40(6): 546-553. DOI: 10.1159/000370034.
    [107] ALEKSIC S, EISENBERG R, TSOMOS E, et al. Glycemic management and clinical outcomes in underserved minority kidney transplant recipients with type 2 and posttransplantation diabetes: a single-center retrospective study[J]. Diabetes Res Clin Pract, 2020, 165: 108221. DOI: 10.1016/j.diabres.2020.108221.
    [108] SANYAL D, BISWAS M, CHAUDHARI N. Long-term efficacy and safety of anti-hyperglycaemic agents in new-onset diabetes after transplant: results from outpatient-based 1-year follow-up and a brief review of treatment options[J]. Diabetes Metab Syndr, 2021, 15(1): 13-19. DOI: 10.1016/j.dsx.2020.11.019.
    [109] VOYTOVICH MH, HAUKEREID C, HJELMESAETH J, et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients[J]. Clin Transplant, 2007, 21(2): 246-251. DOI: 10.1111/j.1399-0012.2006.00634.x.
    [110] RAVEN LM, MUIR CA, KESSLER IGLESIAS C, et al. Sodium glucose co-transporter 2 inhibition with empagliflozin on metabolic, cardiac and renal outcomes in recent cardiac transplant recipients (EMPA-HTx): protocol for a randomised controlled trial[J]. BMJ Open, 2023, 13(3): e069641. DOI: 10.1136/bmjopen-2022-069641.
    [111] DZIODZIO T, BIEBL M, ÖLLINGER R, et al. The role of bariatric surgery in abdominal organ transplantation-the next big challenge? [J]. Obes Surg, 2017, 27(10): 2696-2706. DOI: 10.1007/s11695-017-2854-8.
    [112] HADJIEVANGELOU N, KULENDRAN M, MCGLONE ER, et al. Is bariatric surgery in patients following renal transplantation safe and effective? a best evidence topic[J]. Int J Surg, 2016, 28: 191-195. DOI: 10.1016/j.ijsu.2016.02.095.
    [113] SCHINDEL H, WINKLER J, YEMINI R, et al. Survival benefit in bariatric surgery kidney recipients may be mediated through effects on kidney graft function and improvement of co-morbidities: a case-control study[J]. Surg Obes Relat Dis, 2019, 15(4): 621-627. DOI: 10.1016/j.soard.2019.01.034.
    [114] HECKING M, HAIDINGER M, DÖLLER D, et al. Early basal insulin therapy decreases new-onset diabetes after renal transplantation[J]. J Am Soc Nephrol, 2012, 23(4): 739-749. DOI: 10.1681/ASN.2011080835.
    [115] American Diabetes Association Professional Practice Committee. 16. Diabetes care in the hospital: standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45(Suppl 1): S244-S253. DOI: 10.2337/dc22-S016.
    [116] LO C, TOYAMA T, OSHIMA M, et al. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients[J]. Cochrane Database Syst Rev, 2020, 8(8): CD009966. DOI: 10.1002/14651858.CD009966.pub3.
    [117] XIA M, YANG H, TONG X, et al. Risk factors for new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis[J]. J Diabetes Investig, 2021, 12(1): 109-122. DOI: 10.1111/jdi.13317.
    [118] CAI R, WU M, XING Y. Pretransplant metabolic syndrome and its components predict post-transplantation diabetes mellitus in Chinese patients receiving a first renal transplant[J]. Ther Clin Risk Manag, 2019, 15: 497-503. DOI: 10.2147/TCRM.S190185.
    [119] ADAMS LA, ARAUZ O, ANGUS PW, et al. Additive impact of pre-liver transplant metabolic factors on survival post-liver transplant[J]. J Gastroenterol Hepatol, 2016, 31(5): 1016-1024. DOI: 10.1111/jgh.13240.
    [120] BERGREM HA, VALDERHAUG TG, HARTMANN A, et al. Undiagnosed diabetes in kidney transplant candidates: a case-finding strategy[J]. Clin J Am Soc Nephrol, 2010, 5(4): 616-622. DOI: 10.2215/CJN.07501009.
    [121] ISHIKAWA S, TASAKI M, IKEDA M, et al. Pretransplant BMI should be <25 in Japanese kidney transplant recipients: a single-center experience[J]. Transplant Proc, 2023, 55(1): 72-79. DOI: 10.1016/j.transproceed.2022.10.058.
    [122] BAMBHA KM, DODGE JL, GRALLA J, et al. Low, rather than high, body mass index confers increased risk for post-liver transplant death and graft loss: risk modulated by model for end-stage liver disease[J]. Liver Transpl, 2015, 21(10): 1286-1294. DOI: 10.1002/lt.24188.
    [123] KIM DG, KIM BS, CHOI HY, et al. Association between post-transplant uric acid level and renal allograft fibrosis: analysis using Banff pathologic scores from renal biopsies[J]. Sci Rep, 2018, 8(1): 11601. DOI: 10.1038/s41598-018-29948-9.
    [124] KITTLESON MM, BEAD V, FRADLEY M, et al. Elevated uric acid levels predict allograft vasculopathy in cardiac transplant recipients[J]. J Heart Lung Transplant, 2007, 26(5): 498-503. DOI: 10.1016/j.healun.2007.01.039.
    [125] BURROUGHS TE, SWINDLE J, TAKEMOTO S, et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients[J]. Transplantation, 2007, 83(8): 1027-1034. DOI: 10.1097/01.tp.0000259617.21741.95.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  233
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回