留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从基础研究到临床实践:调节性T细胞在移植免疫耐受中的应用研究进展

胡露, 粘烨琦. 从基础研究到临床实践:调节性T细胞在移植免疫耐受中的应用研究进展[J]. 器官移植, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049
引用本文: 胡露, 粘烨琦. 从基础研究到临床实践:调节性T细胞在移植免疫耐受中的应用研究进展[J]. 器官移植, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049
Hu Lu, Nian Yeqi. Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049
Citation: Hu Lu, Nian Yeqi. Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 745-753. doi: 10.3969/j.issn.1674-7445.2023049

从基础研究到临床实践:调节性T细胞在移植免疫耐受中的应用研究进展

doi: 10.3969/j.issn.1674-7445.2023049
基金项目: 国家自然科学基金青年基金项目(82101874)
详细信息
    作者简介:
    通讯作者:

    粘烨琦(ORCID:0009-0002-0915-9651),医学博士,研究方向为移植免疫耐受与排斥反应,Email:nianyeqi3014@hotmail.com

  • 中图分类号: R617, R392.4

Advances in application of regulatory T cells in transplant immune tolerance: from basic to clinical research

More Information
  • 摘要: 调节性T细胞(Treg)是机体建立免疫耐受的重要抑制性免疫细胞,在调控机体过度免疫应答和自身免疫性疾病中发挥着重要作用。在移植免疫耐受相关研究中,增加体内Treg数量或增强其功能已被证明是一种能够诱导移植免疫耐受的治疗策略。目前,基于Treg诱导移植免疫耐受的方法包括过继输注Treg、体内扩增Treg和利用抗原特异性Treg。本文对Treg的特征及其作用机制,基础实验最新研究进展及国内外与移植免疫耐受相关的Treg临床实践进行综述,并对Treg治疗未来的挑战与发展进行展望,旨在揭示Treg在移植免疫耐受相关研究中的重要性和应用前景,探讨Treg治疗策略的优势和局限性,并为今后该领域的研究提供参考依据和启示。

     

  • [1] SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164. DOI: 10.4049/jimmunol.155.3.1151.
    [2] HORI S, NOMURA T, SAKAGUCHI S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299(5609): 1057-1061. DOI: 10.1126/science.1079490.
    [3] SAKAGUCHI S. Taking regulatory T cells into medicine[J]. J Exp Med, 2021, 218(6): e20210831. DOI: 10.1084/jem.20210831.
    [4] WHANGBO JS, NIKIFOROW S, KIM HT, et al. A phase 1 study of donor regulatory T-cell infusion plus low-dose interleukin-2 for steroid-refractory chronic graft-vs-host disease[J]. Blood Adv, 2022, 6(21): 5786-5796. DOI: 10.1182/bloodadvances.2021006625.
    [5] LAPP MM, LIN G, KOMIN A, et al. Modeling the potential of Treg-based therapies for transplant rejection: effect of dose, timing, and accumulation site[J]. Transpl Int, 2022, 35: 10297. DOI: 10.3389/ti.2022.10297.
    [6] 石炳毅, 陈文, 刘志佳. 调节性免疫细胞在异种移植免疫中的作用[J]. 器官移植, 2020, 11(3): 321-325. DOI: 10.3969/j.issn.1674-7445.2020.03.001.

    SHI BY, CHEN W, LIU ZJ. The function of regulatory immunological cell in xenotransplantation immunity[J]. Organ Transplant, 2020, 11(3): 321-325. DOI: 10.3969/j.issn.1674-7445.2020.03.001.
    [7] 轩娟娟, 白鸿太, 张继翔, 等. 调节性T细胞亚群在肝移植中的作用及临床应用进展[J]. 中国组织工程研究, 2022, 26(7): 1143-1148.

    XUAN JJ, BAI HT, ZHANG JX, et al. Role of regulatory T cell subsets in liver transplantation and progress in clinical application[J]. Chin J Tissue Eng Res, 2022, 26(7): 1143-1148.
    [8] VAN DER VEEKEN J, CAMPBELL C, PRITYKIN Y, et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells[J]. Immunity, 2022, 55(7): 1173-1184. DOI: 10.1016/j.immuni.2022.05.010.
    [9] OHKURA N, SAKAGUCHI S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases[J]. Cell Res, 2020, 30(6): 465-474. DOI: 10.1038/s41422-020-0324-7.
    [10] FERREIRA RC, SIMONS HZ, THOMPSON WS, et al. Cells with Treg-specific Foxp3 demethylation but low CD25 are prevalent in autoimmunity[J]. J Autoimmun, 2017, 84: 75-86. DOI: 10.1016/j.jaut.2017.07.009.
    [11] MIYARA M, YOSHIOKA Y, KITOH A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor[J]. Immunity, 2009, 30(6): 899-911. DOI: 10.1016/j.immuni.2009.03.019.
    [12] BROWN ME, PETERS LD, HANBALI SR, et al. Human CD4+CD25+CD226- Tregs demonstrate increased purity, lineage stability, and suppressive capacity versus CD4+CD25+CD127lo/- Tregs for adoptive cell therapy[J]. Front Immunol, 2022, 13: 873560. DOI: 10.3389/fimmu.2022.873560.
    [13] LAM AJ, UDAY P, GILLIES JK, et al. Helios is a marker, not a driver, of human Treg stability[J]. Eur J Immunol, 2022, 52(1): 75-84. DOI: 10.1002/eji.202149318.
    [14] SO L, OBATA-NINOMIYA K, HU A, et al. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis[J]. J Exp Med, 2023, 220(3): e20221676. DOI: 10.1084/jem.20221676.
    [15] KURELIC R, KRIEG PF, SONNER JK, et al. Upregulation of phosphodiesterase 2A augments T cell activation by changing cGMP/cAMP cross-talk[J]. Front Pharmacol, 2021, 12: 748798. DOI: 10.3389/fphar.2021.748798.
    [16] LEGOUX FP, LIM JB, CAULEY AW, et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion[J]. Immunity, 2015, 43(5): 896-908. DOI: 10.1016/j.immuni.2015.10.011.
    [17] ESKANDARI SK, SULKAJ I, MELO MB, et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter[J]. Sci Transl Med, 2020, 12(569): eaaw4744. DOI: 10.1126/scitranslmed.aaw4744.
    [18] GOTOT J, DHANA E, YAGITA H, et al. Antigen-specific Helios- , Neuropilin-1- Tregs induce apoptosis of autoreactive B cells via PD-L1[J]. Immunol Cell Biol, 2018, 96(8): 852-862. DOI: 10.1111/imcb.12053.
    [19] ZHANG Y, MAKSIMOVIC J, NASELLI G, et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by Foxp3 in human regulatory T cells[J]. Blood, 2013, 122(16): 2823-2836. DOI: 10.1182/blood-2013-02-481788.
    [20] MANIERI NA, CHIANG EY, GROGAN JL. TIGIT: a key inhibitor of the cancer immunity cycle[J]. Trends Immunol, 2017, 38(1): 20-28. DOI: 10.1016/j.it.2016.10.002.
    [21] BÉZIE S, FREUCHET A, SÉRAZIN C, et al. IL-34 actions on Foxp3+ Tregs and CD14+ monocytes control human graft rejection[J]. Front Immunol, 2020, 11: 1496. DOI: 10.3389/fimmu.2020.01496.
    [22] FIYOUZI T, PELAEZ-PRESTEL HF, REYES-MANZANAS R, et al. Enhancing regulatory T cells to treat inflammatory and autoimmune diseases[J]. Int J Mol Sci, 2023, 24(9): 7797. DOI: 10.3390/ijms24097797.
    [23] SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [24] JOFFRE O, GORSSE N, ROMAGNOLI P, et al. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes[J]. Blood, 2004, 103(11): 4216-4221. DOI: 10.1182/blood-2004-01-0005.
    [25] MARTIN-MORENO PL, TRIPATHI S, CHANDRAKER A. Regulatory T cells and kidney transplantation[J]. Clin J Am Soc Nephrol, 2018, 13(11): 1760-1764. DOI: 10.2215/CJN.01750218.
    [26] LAVAZZA C, BUDELLI S, MONTELATICI E, et al. Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product[J]. J Transl Med, 2022, 20(1): 14. DOI: 10.1186/s12967-021-03200-x.
    [27] FRASER H, SAFINIA N, GRAGEDA N, et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials[J]. Mol Ther Methods Clin Dev, 2018, 8: 198-209. DOI: 10.1016/j.omtm.2018.01.006.
    [28] BAETEN P, VAN ZEEBROECK L, KLEINEWIETFELD M, et al. Improving the efficacy of regulatory T cell therapy[J]. Clin Rev Allergy Immunol, 2022, 62(2): 363-381. DOI: 10.1007/s12016-021-08866-1.
    [29] BROOK MO, HESTER J, PETCHEY W, et al. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients[J]. BMJ Open, 2022, 12(4): e061864. DOI: 10.1136/bmjopen-2022-061864.
    [30] HARDEN PN, GAME DS, SAWITZKI B, et al. Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients[J]. Am J Transplant, 2021, 21(4): 1603-1611. DOI: 10.1111/ajt.16395.
    [31] HARRIS F, BERDUGO YA, TREE T. IL-2-based approaches to Treg enhancement[J]. Clin Exp Immunol, 2023, 211(2): 149-163. DOI: 10.1093/cei/uxac105.
    [32] KOLIOS AGA, TSOKOS GC, KLATZMANN D. Interleukin-2 and regulatory T cells in rheumatic diseases[J]. Nat Rev Rheumatol, 2021, 17(12): 749-766. DOI: 10.1038/s41584-021-00707-x.
    [33] KIM HT, KORETH J, WHANGBO J, et al. Organ-specific response after low-dose interleukin-2 therapy for steroid-refractory chronic graft-versus-host disease[J]. Blood Adv, 2022, 6(15): 4392-4402. DOI: 10.1182/bloodadvances.2022007773.
    [34] WHANGBO JS, KIM HT, MIRKOVIC N, et al. Dose-escalated interleukin-2 therapy for refractory chronic graft-versus-host disease in adults and children[J]. Blood Adv, 2019, 3(17): 2550-2561. DOI: 10.1182/bloodadvances.2019000631.
    [35] MEGURI Y, ASANO T, YOSHIOKA T, et al. Responses of regulatory and effector T-cells to low-dose interleukin-2 differ depending on the immune environment after allogeneic stem cell transplantation[J]. Front Immunol, 2022, 13: 891925. DOI: 10.3389/fimmu.2022.891925.
    [36] ZHOU P. Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity[J]. Cytokine Growth Factor Rev, 2022, 67: 80-88. DOI: 10.1016/j.cytogfr.2022.06.003.
    [37] WILSON MS, PESCE JT, RAMALINGAM TR, et al. Suppression of murine allergic airway disease by IL-2: anti-IL-2 monoclonal antibody-induced regulatory T cells[J]. J Immunol, 2008, 181(10): 6942-6954. DOI: 10.4049/jimmunol.181.10.6942.
    [38] WING JB, TANAKA A, SAKAGUCHI S. Human Foxp3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. DOI: 10.1016/j.immuni.2019.01.020.
    [39] HU M, HAWTHORNE WJ, NICHOLSON L, et al. Low-dose interleukin-2 combined with rapamycin led to an expansion of CD4+CD25+Foxp3+ regulatory T cells and prolonged human islet allograft survival in humanized mice[J]. Diabetes, 2020, 69(8): 1735-1748. DOI: 10.2337/db19-0525.
    [40] ZHANG B, SUN J, WANG Y, et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells[J]. Nat Biomed Eng, 2021, 5(11): 1288-1305. DOI: 10.1038/s41551-021-00797-8.
    [41] MURAKAMI N, BORGES TJ, WIN TS, et al. Low-dose interleukin-2 promotes immune regulation in face transplantation: a pilot study[J]. Am J Transplant, 2023, 23(4): 549-558. DOI: 10.1016/j.ajt.2023.01.016.
    [42] MCGOVERN J, HOLLER A, THOMAS S, et al. Forced Foxp3 expression can improve the safety and antigen-specific function of engineered regulatory T cells[J]. J Autoimmun, 2022, 132: 102888. DOI: 10.1016/j.jaut.2022.102888.
    [43] BLUESTONE JA, TANG Q. Treg cells-the next frontier of cell therapy[J]. Science, 2018, 362(6411): 154-155. DOI: 10.1126/science.aau2688.
    [44] FERREIRA LMR, MULLER YD, BLUESTONE JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769. DOI: 10.1038/s41573-019-0041-4.
    [45] HU M, ROGERS NM, LI J, et al. Antigen specific regulatory T cells in kidney transplantation and other tolerance settings[J]. Front Immunol, 2021, 12: 717594. DOI: 10.3389/fimmu.2021.717594.
    [46] PUTNAM AL, SAFINIA N, MEDVEC A, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation[J]. Am J Transplant, 2013, 13(11): 3010-3020. DOI: 10.1111/ajt.12433.
    [47] TRIPATHI S, MARTIN-MORENO PL, KAVALAM G, et al. Adenosinergic pathway and linked suppression: two critical suppressive mechanisms of human donor antigen specific regulatory T cell lines expanded post transplant[J]. Front Immunol, 2022, 13: 849939. DOI: 10.3389/fimmu.2022.849939.
    [48] SANDERS JM, JEYAMOGAN S, MATHEW JM, et al. Foxp3+ regulatory T cell therapy for tolerance in autoimmunity and solid organ transplantation[J]. Front Immunol, 2022, 13: 1055466. DOI: 10.3389/fimmu.2022.1055466.
    [49] YANG SJ, SINGH AK, DROW T, et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models[J]. Sci Transl Med, 2022, 14(665): eabn1716. DOI: 10.1126/scitranslmed.abn1716.
    [50] RANA J, BISWAS M. Regulatory T cell therapy: current and future design perspectives[J]. Cell Immunol, 2020, 356: 104193. DOI: 10.1016/j.cellimm.2020.104193.
    [51] FRITSCHE E, VOLK HD, REINKE P, et al. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy[J]. Trends Biotechnol, 2020, 38(10): 1099-1112. DOI: 10.1016/j.tibtech.2019.12.009.
    [52] 吴俣, 李佩璐, 葛军, 等. 嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用[J]. 器官移植, 2020, 11(5): 547-552. DOI: 10.3969/j.issn.1674-7445.2020.05.003.

    WU Y, LI PL, GE J, et al. Application of chimeric antigen receptor-regulatory T cell immunotherapy in organ transplantation[J]. Organ Transplant, 2020, 11(5): 547-552. DOI: 10.3969/j.issn.1674-7445.2020.05.003.
    [53] MULLER YD, FERREIRA LMR, RONIN E, et al. Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance[J]. Front Immunol, 2021, 12: 686439. DOI: 10.3389/fimmu.2021.686439.
    [54] BOROUGHS AC, LARSON RC, CHOI BD, et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function[J]. JCI Insight, 2019, 5(8): e126194. DOI: 10.1172/jci.insight.126194.
    [55] BOLIVAR-WAGERS S, LARSON JH, JIN S, et al. Cytolytic CD4+ and CD8+ regulatory T-cells and implications for developing immunotherapies to combat graft-versus-host disease[J]. Front Immunol, 2022, 13: 864748. DOI: 10.3389/fimmu.2022.864748.
    [56] 张温乐, 于怡萌, 雷轶, 等. 调节性T细胞免疫疗法在自身免疫疾病治疗和移植免疫中的应用[J]. 药学进展, 2023, 47(1): 35-42. DOI: 10.20053/j.issn1001-5094.2023.01.004.

    ZHANG WL, YU YM, LEI Y, et al. Application of Treg cell immunotherapy in the treatment of autoimmune diseases and transplantation immunity[J]. Prog Pharm Sci, 2023, 47(1): 35-42. DOI: 10.20053/j.issn1001-5094.2023.01.004.
    [57] LIECHTI T, ROEDERER M. OMIP-060: 30-parameter flow cytometry panel to assess T cell effector functions and regulatory T cells[J]. Cytometry A, 2019, 95(11): 1129-1134. DOI: 10.1002/cyto.a.23853.
    [58] SCHERLINGER M, PAN W, HISADA R, et al. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity[J]. Sci Adv, 2022, 8(48): eadc9657. DOI: 10.1126/sciadv.adc9657.
    [59] EYQUEM J, MANSILLA-SOTO J, GIAVRIDIS T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117. DOI: 10.1038/nature21405.
    [60] KUOCH H, KROTOVA K, GRAHAM ML, et al. Multiplexing AAV serotype-specific neutralizing antibodies in preclinical animal models and humans[J]. Biomedicines, 2023, 11(2): 523. DOI: 10.3390/biomedicines11020523.
    [61] ROTH TL, PUIG-SAUS C, YU R, et al. Reprogramming human T cell function and specificity with non-viral genome targeting[J]. Nature, 2018, 559(7714): 405-409. DOI: 10.1038/s41586-018-0326-5.
    [62] DEUSE T, HU X, GRAVINA A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients[J]. Nat Biotechnol, 2019, 37(3): 252-258. DOI: 10.1038/s41587-019-0016-3.
  • 加载中
图(1)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  242
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 录用日期:  2023-07-10
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回