留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人脐带间充质干细胞来源外泌体在肾缺血-再灌注损伤中的保护作用及其机制研究

郭文文, 袁圆, 王浩, 等. 人脐带间充质干细胞来源外泌体在肾缺血-再灌注损伤中的保护作用及其机制研究[J]. 器官移植, 2023, 14(3): 371-378. doi: 10.3969/j.issn.1674-7445.2023.03.008
引用本文: 郭文文, 袁圆, 王浩, 等. 人脐带间充质干细胞来源外泌体在肾缺血-再灌注损伤中的保护作用及其机制研究[J]. 器官移植, 2023, 14(3): 371-378. doi: 10.3969/j.issn.1674-7445.2023.03.008
Guo Wenwen, Yuan Yuan, Wang Hao, et al. Protective role and mechanism of human umbilical cord mesenchymal stem cell-derived exosome in renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 371-378. doi: 10.3969/j.issn.1674-7445.2023.03.008
Citation: Guo Wenwen, Yuan Yuan, Wang Hao, et al. Protective role and mechanism of human umbilical cord mesenchymal stem cell-derived exosome in renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 371-378. doi: 10.3969/j.issn.1674-7445.2023.03.008

人脐带间充质干细胞来源外泌体在肾缺血-再灌注损伤中的保护作用及其机制研究

doi: 10.3969/j.issn.1674-7445.2023.03.008
基金项目: 

甘肃省自然科学基金 20JR10RA700

兰州市科技局项目 2019-ZD-41

兰州大学第一医院院内基金 ldyyyn2020-106

详细信息
    作者简介:
    通讯作者:

    吕兴华(ORCID:0000-0002-6757-6974),博士,硕士研究生导师,主任医师,研究方向为围手术期器官保护,Email:ldyyrjsszx1214@163.com

  • 中图分类号: R617, R692

Protective role and mechanism of human umbilical cord mesenchymal stem cell-derived exosome in renal ischemia-reperfusion injury

More Information
  • 摘要:   目的  探究人脐带间充质干细胞来源外泌体(hucMSC-Exo)在肾缺血-再灌注损伤(IRI)中的保护作用,明确瞬时受体电位阳离子通道蛋白(TRPC)6/聚腺苷二磷酸核糖聚合酶(PARP)1信号通路在该过程中的重要作用及其调控机制。  方法  采用超速离心法提取hucMSC-Exo,通过透射电子显微镜(透射电镜)、纳米颗粒追踪分析和蛋白质印迹法对其进行鉴定。将SD大鼠随机分成假手术组(S组)、假手术+TRPC6抑制剂SKF96365组(SS组)、肾IRI组(IRI组)、外泌体处理组(EXO组)、外泌体+TRPC6抑制剂SKF96365组(ES组),每组6只。检测血清肌酐和血尿素氮水平,苏木素-伊红(HE)染色观察肾组织病理学改变并行Paller评分,蛋白质印迹法检测大鼠肾组织中坏死性凋亡关键分子,包括受体相互作用蛋白激酶(RIPK)1、RIPK3和混合谱系激酶结构域样蛋白(MLKL)、TRPC6和PARP1的表达水平。  结果  透射电镜下观察到典型茶托样结构,纳米颗粒追踪分析结果显示所提取物质的平均直径为125.9 nm,蛋白质印迹法检测其表面标志CD9、CD63、CD81表达阳性,证实提取物为外泌体。与S组比较,IRI组血清肌酐、血尿素氮水平增加,肾组织病理损伤加重,Paller评分增加,TRPC6、PARP1蛋白相对表达量下降,RIPK1、RIPK3、MLKL蛋白相对表达量增加(均为P < 0.05);与IRI组比较,EXO组血清肌酐、血尿素氮水平降低,肾组织病理损伤减轻,Paller评分降低,TRPC6、PARP1蛋白相对表达量增加,RIPK1、RIPK3、MLKL蛋白相对表达量下降(均为P < 0.05);与EXO组比较,ES组血清肌酐、血尿素氮水平增加,肾组织病理损伤加重,Paller评分增加,TRPC6、PARP1蛋白相对表达量下降,RIPK1、RIPK3、MLKL蛋白相对表达量增加(均为P < 0.05)。  结论  hucMSC-Exo可减轻大鼠肾IRI所致的坏死性凋亡,其保护机制与TRPC6/PARP1通路激活有关。

     

  • 图  1  hucMSC-Exo的鉴定

    注:A图为透射电镜检测hucMSC-Exo的形态(×200 000);B图为纳米颗粒追踪分析测定hucMSC-Exo粒径大小(平均直径125.9 nm);C图为蛋白质印迹法检测hucMSC-Exo中CD9、CD63和CD81的表达。

    Figure  1.  Characterization of hucMSC-Exo

    图  2  各组肾组织HE染色及Paller评分

    注:A~E图分别为S组、SS组、IRI组、EXO组、ES组大鼠肾组织HE染色结果(×400);F图为各组大鼠肾组织Paller评分。与S组比较,aP < 0.05;与IRI组比较,bP < 0.05;与EXO组比较,cP < 0.05。

    Figure  2.  HE staining and Paller score of renal tissues in each group

    图  3  各组血清肌酐和血尿素氮水平

    注:A图为各组大鼠血清肌酐水平;B图为各组大鼠血尿素氮水平。与S组比较,aP < 0.05;与IRI组比较,bP < 0.05;与EXO组比较,cP < 0.05。

    Figure  3.  Serum creatinine and blood urea nitrogen levels in each group

    图  4  各组肾组织RIPK1、RIPK3、MLKL、TRPC6、PARP1蛋白表达水平

    注:A图为蛋白质印迹法检测各组大鼠肾组织RIPK1、RIPK3、MLKL的表达;B图为蛋白质印迹法检测各组大鼠肾组织TRPC6、PARP1的表达。与S组比较,aP < 0.05;与IRI组比较,bP < 0.05;与EXO组比较,cP < 0.05。

    Figure  4.  The protein expression levels of RIPK1, RIPK3, MLKL, TRPC6 and PARP1 of renal tissues in each group

  • [1] THAPA K, SINGH TG, KAUR A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury[J]. Life Sci, 2021, 282: 119843. DOI: 10.1016/j.lfs.2021.119843.
    [2] G BARDALLO R, PANISELLO-ROSELLÓ A, SANCHEZ-NUNO S, et al. Nrf2 and oxidative stress in liver ischemia/reperfusion injury[J]. FEBS J, 2022, 289(18): 5463-5479. DOI: 10.1111/febs.16336.
    [3] WU MY, YIANG GT, LIAO WT, et al. Current mechanistic concepts in ischemia and reperfusion injury[J]. Cell Physiol Biochem, 2018, 46(4): 1650-1667. DOI: 10.1159/000489241.
    [4] MARTIN JL, GRUSZCZYK AV, BEACH TE, et al. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury[J]. Pediatr Nephrol, 2019, 34(7): 1167-1174. DOI: 10.1007/s00467-018-3984-5.
    [5] JUN W, BENJANUWATTRA J, CHATTIPAKORN SC, et al. Necroptosis in renal ischemia/reperfusion injury: a major mode of cell death?[J]. Arch Biochem Biophys, 2020, 689: 108433. DOI: 10.1016/j.abb.2020.108433.
    [6] FENG Y, IMAM ALIAGAN A, TOMBO N, et al. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion[J]. Cells, 2022, 11(12): 1894. DOI: 10.3390/cells11121894.
    [7] SHEN B, HE Y, ZHOU S, et al. TRPC6 may protect renal ischemia-reperfusion injury through inhibiting necroptosis of renal tubular epithelial cells[J]. Med Sci Monit, 2016, 22: 633-641. DOI: 10.12659/msm.897353.
    [8] HUANG J, CAO H, CUI B, et al. Mesenchymal stem cells-derived exosomes ameliorate ischemia/reperfusion induced acute kidney injury in a porcine model[J]. Front Cell Dev Biol, 2022, 10: 899869. DOI: 10.3389/fcell.2022.899869.
    [9] DING C, ZHENG J, WANG B, et al. Exosomal microRNA-374b-5p from tubular epithelial cells promoted M1 macrophages activation and worsened renal ischemia/reperfusion injury[J]. Front Cell Dev Biol, 2020, 8: 587693. DOI: 10.3389/fcell.2020.587693.
    [10] ZHANG Y, WANG J, YANG B, et al. Transfer of microRNA-216a-5p from exosomes secreted by human urine-derived stem cells reduces renal ischemia/reperfusion injury[J]. Front Cell Dev Biol, 2020, 8: 610587. DOI: 10.3389/fcell.2020.610587.
    [11] SHEN B, MEI M, PU Y, et al. Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1α/miR-26a/TRPC6/PARP1 signaling[J]. Mol Ther Nucleic Acids, 2019, 17: 701-713. DOI: 10.1016/j.omtn.2019.06.025.
    [12] ZHANG Y, CHANG Y, HAN Z, et al. Estrogen protects against renal ischemia-reperfusion injury by regulating Th17/Treg cell immune balance[J]. Dis Markers, 2022: 7812099. DOI: 10.1155/2022/7812099.
    [13] ZHOU Z, YOU B, JI C, et al. Implications of crosstalk between exosome-mediated ferroptosis and diseases for pathogenesis and treatment[J]. Cells, 2023, 12(2): 311. DOI: 10.3390/cells12020311.
    [14] LIN Z, WU Y, XU Y, et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential[J]. Mol Cancer, 2022, 21(1): 179. DOI: 10.1186/s12943-022-01650-5.
    [15] LAI JJ, CHAU ZL, CHEN SY, et al. Exosome processing and characterization approaches for research and technology development[J]. Adv Sci (Weinh), 2022, 9(15): e2103222. DOI: 10.1002/advs.202103222.
    [16] KEERTHIKUMAR S, CHISANGA D, ARIYARATNE D, et al. ExoCarta: a web-based compendium of exosomal cargo[J]. J Mol Biol, 2016, 428(4): 688-692. DOI: 10.1016/j.jmb.2015.09.019.
    [17] HU Q, SU H, LI J, et al. Clinical applications of exosome membrane proteins[J]. Precis Clin Med, 2020, 3(1): 54-66. DOI: 10.1093/pcmedi/pbaa007.
    [18] SOHRABI B, DAYERI B, ZAHEDI E, et al. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy[J]. Cancer Gene Ther, 2022, 29(8/9): 1105-1116. DOI: 10.1038/s41417-022-00427-8.
    [19] CHEN S, SUN F, QIAN H, et al. Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy[J]. Stem Cells Int, 2022: 1779346. DOI: 10.1155/2022/1779346.
    [20] KIMIZ-GEBOLOGLU I, ONCEL SS. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake[J]. J Control Release, 2022, 347: 533-543. DOI: 10.1016/j.jconrel.2022.05.027.
    [21] FERREIRA D, MOREIRA JN, RODRIGUES LR. New advances in exosome-based targeted drug delivery systems[J]. Crit Rev Oncol Hematol, 2022, 172: 103628. DOI: 10.1016/j.critrevonc.2022.103628.
    [22] 王光华, 王桂斌, 滕晓华. 间充质干细胞来源外泌体治疗缺血再灌注损伤分子机制及研究进展[J]. 生物医学工程与临床, 2021, 25(5): 639-643. DOI: 10.13339/j.cnki.sglc.20210820.019.

    WANG GH, WANG GB, TENG XH. Review of exosomes derived from mesenchymal stem cells in protecting ischemia-reperfusion injury[J]. Biomed Eng Clin Med, 2021, 25(5): 639-643. DOI: 10.13339/j.cnki.sglc.20210820.019.
    [23] LIAO YJ, MA YX, HUANG LL, et al. Augmenter of liver regeneration protects the kidney against ischemia-reperfusion injury by inhibiting necroptosis[J]. Bioengineered, 2022, 13(3): 5152-5167. DOI: 10.1080/21655979.2022.2037248.
    [24] 刘昕蓓, 刘文静. 调控性细胞死亡在肾脏缺血再灌注损伤中的研究进展[J]. 生理学报, 2022, 74(2): 320-332. DOI: 10.13294/j.aps.2022.0025.

    LIU XB, LIU WJ. The role of regulated cell death in renal ischemia-reperfusion injury[J]. Acta Physiol Sin, 2022, 74(2): 320-332. DOI: 10.13294/j.aps.2022.0025.
    [25] DEGTEREV A, HUANG Z, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119. DOI: 10.1038/nchembio711.
    [26] DELLA TORRE L, NEBBIOSO A, STUNNENBERG HG, et al. The role of necroptosis: biological relevance and its involvement in cancer[J]. Cancers (Basel), 2021, 13(4): 684. DOI: 10.3390/cancers13040684.
    [27] ASHOUR H, HASHEM HA, KHOWAILED AA, et al. Necrostatin-1 mitigates renal ischaemia-reperfusion injury - time dependent - via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response[J]. Clin Exp Pharmacol Physiol, 2022, 49(4): 501-514. DOI: 10.1111/1440-1681.13625.
    [28] LIU Z, LI C, LI Y, et al. Propofol reduces renal ischemia reperfusion-mediated necroptosis by up-regulation of SIRT1 in rats[J]. Inflammation, 2022, 45(5): 2038-2051. DOI: 10.1007/s10753-022-01673-6.
    [29] YUAN X, LI D, CHEN X, et al. Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis[J]. Cell Death Dis, 2017, 8(12): 3200. DOI: 10.1038/s41419-017-0041-4.
    [30] WANG H, CHENG X, TIAN J, et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes[J]. Pharmacol Ther, 2020, 209: 107497. DOI: 10.1016/j.pharmthera.2020.107497.
    [31] ENGLISCH CN, PAULSEN F, TSCHERNIG T. TRPC channels in the physiology and pathophysiology of the renal tubular system: what do we know?[J]. Int J Mol Sci, 2022, 24(1): 181. DOI: 10.3390/ijms24010181.
    [32] DRYER SE, KIM EY. The effects of TRPC6 knockout in animal models of kidney disease[J]. Biomolecules, 2022, 12(11): 1710. DOI: 10.3390/biom12111710.
    [33] 郭文文, 袁圆, 魏华锋, 等. 瞬时受体电位阳离子通道蛋白6在缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(5): 659-665. DOI: 10.3969/j.issn.1674-7445.2022.05.017.

    GUO WW, YUAN Y, WEI HF, et al. Research progress on the role of transient receptor potential canonical 6 in ischemia-reperfusion injury[J]. Organ Transplant, 2022, 13(5): 659-665. DOI: 10.3969/j.issn.1674-7445.2022.05.017.
    [34] ZHENG Z, TSVETKOV D, BARTOLOMAEUS TUP, et al. Role of TRPC6 in kidney damage after acute ischemic kidney injury[J]. Sci Rep, 2022, 12(1): 3038. DOI: 10.1038/s41598-022-06703-9.
    [35] SHEN B, MEI M, AI S, et al. TRPC6 inhibits renal tubular epithelial cell pyroptosis through regulating zinc influx and alleviates renal ischemia-reperfusion injury[J]. FASEB J, 2022, 36(10): e22527. DOI: 10.1096/fj.202200109RR.
    [36] PU Y, ZHAO H, SHEN B, et al. TRPC6 ameliorates renal ischemic reperfusion injury by inducing Zn2+ influx and activating autophagy to resist necrosis[J]. Ann Transl Med, 2022, 10(5): 249. DOI: 10.21037/atm-21-5837.
  • 加载中
图(5)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  165
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-12
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回