留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年中国肾移植研究年度盘点

魏健超, 何凯鸣, 孙启全. 2022年中国肾移植研究年度盘点[J]. 器官移植, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003
引用本文: 魏健超, 何凯鸣, 孙启全. 2022年中国肾移植研究年度盘点[J]. 器官移植, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003
Wei Jianchao, He Kaiming, Sun Qiquan. Research highlights on kidney transplantation in 2022 from China[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003
Citation: Wei Jianchao, He Kaiming, Sun Qiquan. Research highlights on kidney transplantation in 2022 from China[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 336-342. doi: 10.3969/j.issn.1674-7445.2023.03.003

2022年中国肾移植研究年度盘点

doi: 10.3969/j.issn.1674-7445.2023.03.003
基金项目: 

国家自然科学基金面上项目 81970650

国家自然科学基金面上项目 82270783

详细信息
    作者简介:
    通讯作者:

    孙启全(ORCID:0000-0002-7296-316X),博士,主任医师,研究方向为肾移植相关疾病,Email:sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617, R692

Research highlights on kidney transplantation in 2022 from China

More Information
  • 摘要: 肾移植作为成熟的器官移植手术已成为治疗终末期肾病的最优手段,提高了患者的生存质量。但目前肾移植术后依然面临排斥反应、感染、缺血-再灌注损伤、移植肾纤维化等诸多挑战,严重影响肾移植的疗效。伴随转化医学、再生医学、生物材料等新兴领域的发展,我国研究团队不断努力,为解决各种肾移植临床相关问题发表了许多亮眼研究。本文就2022年度肾移植基础与临床相关的前沿以及移植领域的新技术、新进展进行综述,关注中国团队2022年在移植领域取得的成果,以本土化的视角为解决为肾移植的重大临床问题提供思路,促进我国肾移植的进一步发展。

     

  • [1] STROHMAIER S, WALLISCH C, KAMMER M, et al. Survival benefit of first single-organ deceased donor kidney transplantation compared with long-term dialysis across ages in transplant-eligible patients with kidney failure[J]. JAMA Netw Open, 2022, 5(10): e2234971. DOI: 10.1001/jamanetworkopen.2022.34971.
    [2] HARIHARAN S, ISRANI AK, DANOVITCH G. Long-term survival after kidney transplantation[J]. N Engl J Med, 2021, 385(8): 729-743. DOI: 10.1056/NEJMra2014530.
    [3] MATSUDA Y, WATANABE T, LI XK. Approaches for controlling antibody-mediated allograft rejection through targeting B cells[J]. Front Immunol, 2021, 12: 682334. DOI: 10.3389/fimmu.2021.682334.
    [4] ZENG X, LIU G, PENG W, et al. Combined deficiency of SLAMF8 and SLAMF9 prevents endotoxin-induced liver inflammation by downregulating TLR4 expression on macrophages[J]. Cell Mol Immunol, 2020, 17(2): 153-162. DOI: 10.1038/s41423-018-0191-z.
    [5] TENG L, SHEN L, ZHAO W, et al. SLAMF8 participates in acute renal transplant rejection via TLR4 pathway on pro-inflammatory macrophages[J]. Front Immunol, 2022, 13: 846695. DOI: 10.3389/fimmu.2022.846695.
    [6] ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): eaaz7548. DOI: 10.1126/science.aaz7548.
    [7] HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2): 293-307. DOI: 10.1111/ajt.14625.
    [8] JEONG HJ. Diagnosis of renal transplant rejection: Banff classification and beyond[J]. Kidney Res Clin Pract, 2020, 39(1): 17-31. DOI: 10.23876/j.krcp.20.003.
    [9] LIU SJ, MA K, LIU LS, et al. Point-of-care non-invasive enzyme-cleavable nanosensors for acute transplant rejection detection[J]. Biosens Bioelectron, 2022, 215: 114568. DOI: 10.1016/j.bios.2022.114568.
    [10] LUO Z, LIAO T, ZHANG Y, et al. Ex vivo anchored PD-L1 functionally prevent in vivo renal allograft rejection[J]. Bioeng Transl Med, 2022, 7(3): e10316. DOI: 10.1002/btm2.10316.
    [11] WANG W, TENG Y, XUE JJ, et al. Nanotechnology in kidney and islet transplantation: an ongoing, promising field[J]. Front Immunol, 2022, 13: 846032. DOI: 10.3389/fimmu.2022.846032.
    [12] LIU C, YAN P, XU X, et al. In vivo kidney allograft endothelial specific scavengers for on-site inflammation reduction under antibody-mediated rejection[J]. Small, 2022, 18(36): e2106746. DOI: 10.1002/smll.202106746.
    [13] ASHCROFT J, LEIGHTON P, ELLIOTT TR, et al. Extracellular vesicles in kidney transplantation: a state-of-the-art review[J]. Kidney Int, 2022, 101(3): 485-497. DOI: 10.1016/j.kint.2021.10.038.
    [14] LIN J, LV J, YU S, et al. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation[J]. Adv Sci (Weinh), 2022, 9(31): e2202633. DOI: 10.1002/advs.202202633.
    [15] TSAI HI, WU Y, LIU X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634. DOI: 10.1002/advs.202102634.
    [16] ZHAO C, XU Z, WANG Z, et al. Role of tumor necrosis factor-α in epithelial-to-mesenchymal transition in transplanted kidney cells in recipients with chronic allograft dysfunction[J]. Gene, 2018, 642: 483-490. DOI: 10.1016/j.gene.2017.11.059.
    [17] HILL C, LI J, LIU D, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(8): 591. DOI: 10.1038/s41419-019-1820-x.
    [18] MJÖRNSTEDT L, SCHWARTZ SØRENSEN S, VON ZUR MÜHLEN B, et al. Renal function three years after early conversion from a calcineurin inhibitor to everolimus: results from a randomized trial in kidney transplantation[J]. Transpl Int, 2015, 28(1): 42-51. DOI: 10.1111/tri.12437.
    [19] GUI Z, SUO C, TAO J, et al. Everolimus alleviates renal allograft interstitial fibrosis by inhibiting epithelial-to-mesenchymal transition not only via inducing autophagy but also via stabilizing IκB-α[J]. Front Immunol, 2022, 12: 753412. DOI: 10.3389/fimmu.2021.753412.
    [20] XIA Z, ZHANG C, GUO C, et al. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway[J]. Acta Biomater, 2022, 144: 42-53. DOI: 10.1016/j.actbio.2022.03.024.
    [21] WANG X, JIANG S, FEI L, et al. Tacrolimus causes hypertension by increasing vascular contractility via RhoA (ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in mice[J]. Hypertension, 2022, 79(10): 2228-2238. DOI: 10.1161/HYPERTENSIONAHA.122.19189.
    [22] LIANG H, ZHANG P, YU B, et al. Machine perfusion combined with antibiotics prevents donor-derived infections caused by multidrug-resistant bacteria[J]. Am J Transplant, 2022, 22(7): 1791-1803. DOI: 10.1111/ajt.17032.
    [23] XIANG X, DONG G, ZHU J, et al. Inhibition of HDAC3 protects against kidney cold storage/transplantation injury and allograft dysfunction[J]. Clin Sci (Lond), 2022, 136(1): 45-60. DOI: 10.1042/CS20210823.
    [24] SMITH SF, HOSGOOD SA, NICHOLSON ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells[J]. Kidney Int, 2019, 95(1): 50-56. DOI: 10.1016/j.kint.2018.10.009.
    [25] KOMADA T, CHUNG H, LAU A, et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD[J]. J Am Soc Nephrol, 2018, 29(4): 1165-1181. DOI: 10.1681/ASN.2017080863.
    [26] HUANG T, YIN H, NING W, et al. Expression of inflammasomes NLRP1, NLRP3 and AIM2 in different pathologic classification of lupus nephritis[J]. Clin Exp Rheumatol, 2020, 38(4): 680-690.
    [27] YANG H, WU Y, CHENG M, et al. Roxadustat (FG-4592) protects against ischaemia-induced acute kidney injury via improving CD73 and decreasing AIM2 inflammasome activation[J]. Nephrol Dial Transplant, 2023, 38(4): 858-875. DOI: 10.1093/ndt/gfac308.
    [28] TEJCHMAN K, KOTFIS K, SIEŃKO J. Biomarkers and mechanisms of oxidative stress-last 20 years of research with an emphasis on kidney damage and renal transplantation[J]. Int J Mol Sci, 2021, 22(15): 8010. DOI: 10.3390/ijms22158010.
    [29] FENG S, QU Y, CHU B, et al. Novel gold-platinum nanoparticles serve as broad-spectrum antioxidants for attenuating ischemia reperfusion injury of the kidney[J]. Kidney Int, 2022, 102(5): 1057-1072. DOI: 10.1016/j.kint.2022.07.004.
    [30] LI X, LI R, JI B, et al. Integrative metagenomic and metabolomic analyses reveal the role of gut microbiota in antibody-mediated renal allograft rejection[J]. J Transl Med, 2022, 20(1): 614. DOI: 10.1186/s12967-022-03825-6.
    [31] WANG G, SUI W, XUE W, et al. Comprehensive analysis of B and T cell receptor repertoire in patients after kidney transplantation by high-throughput sequencing[J]. Clin Immunol, 2022, 245: 109162. DOI: 10.1016/j.clim.2022.109162.
    [32] HAN S, ZHAO W, WANG C, et al. Preliminary investigation of the biomarkers of acute renal transplant rejection using integrated proteomics studies, Gene Expression Omnibus datasets, and RNA sequencing[J]. Front Med (Lausanne), 2022, 9: 905464. DOI: 10.3389/fmed.2022.905464.
    [33] YIN S, TAN Q, YANG Y, et al. Transplant outcomes of 100 cases of living-donor ABO-incompatible kidney transplantation[J]. Chin Med J (Engl), 2022, 135(19): 2303-2310. DOI: 10.1097/CM9.0000000000002138.
    [34] ZHANG F, LIANG J, XIONG Y, et al. Serum uric acid as a risk factor for rejection after deceased donor kidney transplantation: a mono-institutional analysis of paired kidneys[J]. Front Immunol, 2022, 13: 973425. DOI: 10.3389/fimmu.2022.973425.
    [35] 许瀚仁, 王继纳, 杨橙, 等. 肾移植患者尿小圆上皮细胞阳性指标与BK病毒尿症的临床相关性[J]. 复旦学报(医学版), 2021, 48(6): 754-761. DOI: 10.3969/j.issn.1672-8467.2021.06.006.

    XU HR, WANG JN, YANG C, et al. Positive indicators of urine small round epithelial cells and their clinical correlation with BK viruria in renal transplant recipients[J]. Fudan Univ J Med Sci, 2021, 48(6): 754-761. DOI: 10.3969/j.issn.1672-8467.2021.06.006.
    [36] 王惠, 徐进, 王素霞. 肾移植受者BK病毒感染的电镜超微病理观察[J]. 电子显微学报, 2023, 42(1): 1-5. DOI: 10.3969/j.issn.1000-6281.2023.01.001.

    WANG H, XU J, WANG SX. Electron microscopic observation of BK virus infection in recipients of transplanted kidney[J]. J Chin Electr Microsc Soc, 2023, 42(1): 1-5. DOI: 10.3969/j.issn.1000-6281.2023.01.001.
    [37] YANG D, ZHUANG B, WANG Y, et al. High-frequency US for BK polyomavirus-associated nephropathy after kidney transplant[J]. Radiology, 2022, 304(2): 333-341. DOI: 10.1148/radiol.211855.
    [38] OELLERICH M, BUDDE K, OSMANODJA B, et al. Donor-derived cell-free DNA as a diagnostic tool in transplantation[J]. Front Genet, 2022, 13: 1031894. DOI: 10.3389/fgene.2022.1031894.
    [39] CHEN XT, QIU J, WU ZX, et al. Using both plasma and urine donor-derived cell-free DNA to identify various renal allograft injuries[J]. Clin Chem, 2022, 68(6): 814-825. DOI: 10.1093/clinchem/hvac053.
    [40] WEN J, SUN R, YANG H, et al. Detection of BK polyomavirus-associated nephropathy using plasma graft-derived cell-free DNA: development of a novel algorithm from programmed monitoring[J]. Front Immunol, 2022, 13: 1006970. DOI: 10.3389/fimmu.2022.1006970.
    [41] WANG J, LI J, CHEN Z, et al. A nomogram for predicting BK virus activation in kidney transplantation recipients using clinical risk factors[J]. Front Med (Lausanne), 2022, 9: 770699. DOI: 10.3389/fmed.2022.770699.
    [42] ZHANG J, QIN H, CHANG M, et al. Gut microbiota dysbiosis in BK polyomavirus-infected renal transplant recipients: a case-control study[J]. Front Cell Infect Microbiol, 2022, 12: 860201. DOI: 10.3389/fcimb.2022.860201.
    [43] FANG Y, ZHANG C, WANG Y, et al. Dynamic risk prediction of BK polyomavirus reactivation after renal transplantation[J]. Front Immunol, 2022, 13: 971531. DOI: 10.3389/fimmu.2022.971531.
    [44] TIAN X, DUAN W, ZHANG X, et al. Metagenomic next-generation sequencing reveals the profile of viral infections in kidney transplant recipients during the COVID-19 pandemic[J]. Front Public Health, 2022, 10: 888064. DOI: 10.3389/fpubh.2022.888064.
    [45] ZOU J, QIU T, ZHOU J, et al. Clinical manifestations and outcomes of renal transplantation patients with pneumocystis jirovecii pneumonia and cytomegalovirus co-infection[J]. Front Med (Lausanne), 2022, 9: 860644. DOI: 10.3389/fmed.2022.860644.
    [46] CHEN RY, LI DW, WANG JY, et al. Prophylactic effect of low-dose trimethoprim-sulfamethoxazole for pneumocystis jirovecii pneumonia in adult recipients of kidney transplantation: a real-world data study[J]. Int J Infect Dis, 2022, 125: 209-215. DOI: 10.1016/j.ijid.2022.10.004.
    [47] GU ZY, LIU WJ, HUANG DL, et al. Preliminary study on the combination effect of clindamycin and low dose trimethoprim-sulfamethoxazole on severe pneumocystis pneumonia after renal transplantation[J]. Front Med (Lausanne), 2022, 9: 827850. DOI: 10.3389/fmed.2022.827850.
    [48] PONTICELLI C, REGGIANI F, MORONI G. Delayed graft function in kidney transplant: risk factors, consequences and prevention strategies[J]. J Pers Med, 2022, 12(10): 1557. DOI: 10.3390/jpm12101557.
    [49] BAHL D, HADDAD Z, DATOO A, et al. Delayed graft function in kidney transplantation[J]. Curr Opin Organ Transplant, 2019, 24(1): 82-86. DOI: 10.1097/MOT.0000000000000604.
    [50] WANG J, LIU J, WU W, et al. Combining clinical parameters and acute tubular injury grading is superior in predicting the prognosis of deceased-donor kidney transplantation: a 7-year observational study[J]. Front Immunol, 2022, 13: 912749. DOI: 10.3389/fimmu.2022.912749.
    [51] SHAN XS, HU LK, WANG Y, et al. Effect of perioperative dexmedetomidine on delayed graft function following a donation-after-cardiac-death kidney transplant: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(6): e2215217. DOI: 10.1001/jamanetworkopen.2022.15217.
  • 加载中
图(1)
计量
  • 文章访问数:  1051
  • HTML全文浏览量:  247
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回