留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因修饰猪-非人灵长类动物异种肾移植面临的问题及挑战

蒋鸿涛, 李涛, 何松哲, 等. 基因修饰猪-非人灵长类动物异种肾移植面临的问题及挑战[J]. 器官移植, 2022, 13(6): 810-817. doi: 10.3969/j.issn.1674-7445.2022.06.018
引用本文: 蒋鸿涛, 李涛, 何松哲, 等. 基因修饰猪-非人灵长类动物异种肾移植面临的问题及挑战[J]. 器官移植, 2022, 13(6): 810-817. doi: 10.3969/j.issn.1674-7445.2022.06.018
Jiang Hongtao, Li Tao, He Songzhe, et al. Problems and challenges of genetically modified pig to non-human primate kidney xenotransplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 810-817. doi: 10.3969/j.issn.1674-7445.2022.06.018
Citation: Jiang Hongtao, Li Tao, He Songzhe, et al. Problems and challenges of genetically modified pig to non-human primate kidney xenotransplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 810-817. doi: 10.3969/j.issn.1674-7445.2022.06.018

基因修饰猪-非人灵长类动物异种肾移植面临的问题及挑战

doi: 10.3969/j.issn.1674-7445.2022.06.018
基金项目: 

海南省重大科技计划项目 ZDKT2019009

海南省自然科学基金高层次人才项目 820RC766

海南省自然科学基金青年项目 821QN413

详细信息
    作者简介:
    通讯作者:

    王毅,主任医师,医学博士,博士研究生导师,研究方向为肾移植,Email: wayne0108@126.com

  • 中图分类号: R617, Q78

Problems and challenges of genetically modified pig to non-human primate kidney xenotransplantation

More Information
  • 摘要: 异种肾移植是解决供肾短缺的潜在方法之一。随着基因修饰技术的进步和免疫抑制药的更新发展,目前基因修饰猪-非人灵长类动物(NHP)异种肾移植临床前研究取得了重大的进步,受体最长存活时间超过500 d,但存活时间超过1年的例数很少,大多数受体在移植术后1~2个月内死亡。因此,仍有一些问题需要明确并解决。本文通过对基因修饰猪-NHP异种肾移植中排斥反应、难治性凝血功能紊乱、持续存在的炎症反应、免疫抑制药的选择、临床受者的选择、交叉感染风险等问题进行综述,总结基因修饰猪-NHP异种肾移植目前所面临的问题及可能解决的方法,为促进临床异种肾移植提供参考。

     

  • [1] 陆新章, 张梅, 娄颜坤, 等. 利用基因编辑技术进行猪异种器官移植及人类疾病模型研究的进展[J]. 上海农业学报, 2021, 37(1): 136-144. DOI: 10.15955/j.issn1000-3924.2021.01.23.

    LU XZ, ZHANG M, LOU YK, et al. Genome editing technologies for xenotransplantation and disease model in pigs[J]. Acta Agric Shanghai, 2021, 37(1): 136-144. DOI: 10.15955/j.issn1000-3924.2021.01.23.
    [2] COOPER DKC, HARA H, IWASE H, et al. Pig kidney xenotransplantation: progress toward clinical trials[J]. Clin Transplant, 2021, 35(1): e14139. DOI: 10.1111/ctr.14139.
    [3] ADAMS AB, KIM SC, MARTENS GR, et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival[J]. Ann Surg, 2018, 268(4): 564-573. DOI: 10.1097/SLA.0000000000002977.
    [4] KIM SC, MATHEWS DV, BREEDEN CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion[J]. Am J Transplant, 2019, 19(8): 2174-2185. DOI: 10.1111/ajt.15329.
    [5] CLEVELAND DC, JAGDALE A, CARLO WF, et al. The genetically engineered heart as a bridge to allotransplantation in infants just around the corner?[J]. Ann Thorac Surg, 2022, 114(2): 536-544. DOI: 10.1016/j.athoracsur.2021.05.025.
    [6] LÄNGIN M, MAYR T, REICHART B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation[J]. Nature, 2018, 564(7736): 430-433. DOI: 10.1038/s41586-018-0765-z.
    [7] FIRL DJ, MARKMANN JF. Measuring success in pig to non-human-primate renal xenotransplantation: systematic review and comparative outcomes analysis of 1051 life-sustaining NHP renal allo- and xeno-transplants[J]. Am J Transplant, 2022, 22(6): 1527-1536. DOI: 10.1111/ajt.16994.
    [8] CARVALHO OLIVEIRA M, VALDIVIA E, VERBOOM M, et al. Generating low immunogenic pig pancreatic islet cell clusters for xenotransplantation[J]. J Cell Mol Med, 2020, 24(9): 5070-5081. DOI: 10.1111/jcmm.15136.
    [9] VOURC'H M, DAVID G, GABORIT B, et al. Pseudomonas aeruginosa infection impairs NKG2D-dependent NK cell cytotoxicity through regulatory T-cell activation[J]. Infect Immun, 2020, 88(12): e00363-20. DOI: 10.1128/IAI.00363-20.
    [10] TAKEUCHI K, ARIYOSHI Y, SHIMIZU A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation[J]. Xenotransplantation, 2021, 28(6): e12708. DOI: 10.1111/xen.12708.
    [11] ZHOU Q, LI T, WANG K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 2022, 13: 928173. DOI: 10.3389/fimmu.2022.928173.
    [12] YUE Y, XU W, KAN Y, et al. Extensive germline genome engineering in pigs[J]. Nat Biomed Eng, 2021, 5(2): 134-143. DOI: 10.1038/s41551-020-00613-9.
    [13] GAO Y, SHAN W, GU T, et al. Daratumumab prevents experimental xenogeneic graft-versus-host disease by skewing proportions of T cell functional subsets and inhibiting T cell activation and migration[J]. Front Immunol, 2021, 12: 785774. DOI: 10.3389/fimmu.2021.785774.
    [14] BOCKERMANN R, JÄRNUM S, RUNSTRÖM A, et al. Imlifidase-generated single-cleaved IgG: implications for transplantation[J]. Transplantation, 2022, 106(7): 1485-1496. DOI: 10.1097/TP.0000000000004031.
    [15] IWASE H, EKSER B, HARA H, et al. Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition[J]. Xenotransplantation, 2014, 21(1): 72-83. DOI: 10.1111/xen.12073.
    [16] CAO PP, WANG BF, NORTON JE, et al. Studies on activation and regulation of the coagulation cascade in chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2022, 150(2): 467-476. DOI: 10.1016/j.jaci.2022.02.018.
    [17] ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [18] IWASE H, HARA H, EZZELARAB M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts[J]. Xenotransplantation, 2017, 24(2): 10.1111/xen. 12293. DOI: 10.1111/xen.12293.
    [19] LI J, HARA H, WANG Y, et al. Evidence for the important role of inflammation in xenotransplantation[J]. J Inflamm (Lond), 2019, 16: 10. DOI: 10.1186/s12950-019-0213-3.
    [20] IWASE H, LIU H, LI T, et al Therapeutic regulation of systemic inflammation in xenograft recipients[J]. Xenotransplantation, 2017, 24(2): 10.1111/xen. 12296. DOI: 10.1111/xen.12296.
    [21] JAFFAR J, MCMILLAN L, WILSON N, et al. Coagulation factor-XⅡ induces interleukin-6 by primary lung fibroblasts: a role in idiopathic pulmonary fibrosis?[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322(2): L258-L272. DOI: 10.1152/ajplung.00165.2021.
    [22] EZZELARAB MB, COOPER DKC. Systemic inflammation in xenograft recipients (SIXR): a new paradigm in pig-to-primate xenotransplantation?[J]. Int J Surg, 2015, 23(Pt B): 301-305. DOI: 10.1016/j.ijsu.2015.07.643.
    [23] BEAVERS DP, KRITCHEVSKY SB, GILL TM, et al. Elevated IL-6 and CRP levels are associated with incident self-reported major mobility disability: a pooled analysis of older adults with slow gait speed[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(12): 2293-2299. DOI: 10.1093/gerona/glab093.
    [24] ZHANG G, IWASE H, LI Q, et al. The role of interleukin-6 (IL-6) in the systemic inflammatory response in xenograft recipients and in pig kidney xenograft failure[J]. Front Immunol, 2021, 12: 788949. DOI: 10.3389/fimmu.2021.788949.
    [25] LI T, JIANG H, LIU H, et al. Extracellular histones and xenotransplantation[J]. Xenotransplantation, 2020, 7(5): e12618. DOI: 10.1111/xen.12618.
    [26] TANG T, CHENG X, TRUONG B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint[J]. Pharmacol Ther, 2021, 219: 107709. DOI: 10.1016/j.pharmthera.2020.107709.
    [27] ANGELI F, VERDECCHIA P, SAVONITTO S, et al. Soluble CD40 ligand and outcome in patients with coronary artery disease undergoing percutaneous coronary intervention[J]. Clin Chem Lab Med, 2021, 60(1): 118-126. DOI: 10.1515/cclm-2021-0817.
    [28] BIKHET M, IWASE H, YAMAMOTO T, et al. What therapeutic regimen will be optimal for initial clinical trials of pig organ transplantation?[J]. Transplantation, 2021, 105(6): 1143-1155. DOI: 10.1097/TP.0000000000003622.
    [29] MICHAELS AJ, STOPPATO M, FLORES WJ, et al. Anti-CD40 antibody 2C10 binds to a conformational epitope at the CD40-CD154 interface that is conserved among primate species[J]. Am J Transplant, 2020, 20(1): 298-305. DOI: 10.1111/ajt.15574.
    [30] VINCENTI F, KLINTMALM G, YANG H, et al. A randomized, phase 1b study of the pharmacokinetics, pharmacodynamics, safety, and tolerability of bleselumab, a fully human, anti-CD40 monoclonal antibody, in kidney transplantation[J]. Am J Transplant, 2020, 20(1): 172-180. DOI: 10.1111/ajt.15560.
    [31] ESPIÉ P, HE Y, KOO P, et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody[J]. Am J Transplant, 2020, 20(2): 463-473. DOI: 10.1111/ajt.15661.
    [32] KIM SC, WAKWE W, HIGGINBOTHAM LB, et al. Fc-silent anti-CD154 domain antibody effectively prevents nonhuman primate renal allograft rejection[J]. Am J Transplant, 2017, 17(5): 1182-1192. DOI: 10.1111/ajt.14197.
    [33] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [34] ZHANG Z, HARA H, LONG C, et al. Immune responses of HLA highly sensitized and nonsensitized patients to genetically engineered pig cells[J]. Transplantation, 2018, 102(5): e195-e204. DOI: 10.1097/TP.0000000000002060.
    [35] LI T, FENG H, DU J, et al. Serum antibody binding and cytotoxicity to pig cells in Chinese subjects: relevance to clinical renal xenotransplantation[J]. Front Immunol, 2022, 13: 844632. DOI: 10.3389/fimmu.2022.844632.
    [36] LADOWSKI JM, HARA H, COOPER DKC. The role of SLAs in xenotransplantation[J]. Transplantation, 2021, 105(2): 300-307. DOI: 10.1097/TP.0000000000003303.
    [37] LI Q, HARA H, ZHANG Z, et al. Is sensitization to pig antigens detrimental to subsequent allotransplantation?[J]. Xenotransplantation, 2018, 25(3): e12393. DOI: 10.1111/xen.12393.
    [38] HARTLINE CB, CONNER RL, JAMES SH, et al. Xenotransplantation panel for the detection of infectious agents in pigs[J]. Xenotransplantation, 2018, 25(4): e12427. DOI: 10.1111/xen.12427.
    [39] FISHMAN JA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 2018, 18(8): 1857-1864. DOI: 10.1111/ajt.14725.
    [40] DENNER J. The porcine cytomegalovirus (PCMV) will not stop xenotransplantation[J]. Xenotransplantation, 2022, 29(3): e12763. DOI: 10.1111/xen.12763.
    [41] MA Y, JIA J, FAN R, et al. Screening and identification of the first non-CRISPR/Cas9-treated Chinese miniature pig with defective porcine endogenous retrovirus pol genes[J]. Front Immunol, 2022, 12: 797608. DOI: 10.3389/fimmu.2021.797608.
    [42] BOSE S, VOLPATTI LR, THIONO D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells[J]. Nat Biomed Eng, 2020, 4(8): 814-826. DOI: 10.1038/s41551-020-0538-5.
    [43] HINRICHS A, KESSLER B, KUROME M, et al. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver[J]. Mol Metab, 2018, 11: 113-128. DOI: 10.1016/j.molmet.2018.03.006.
    [44] IWASE H, BALL S, ADAMS K, et al. Growth hormone receptor knockout: relevance to xenotransplantation[J]. Xenotransplantation, 2021, 28(2): e12652. DOI: 10.1111/xen.12652.
    [45] ASHTON-CHESS J, ROUSSEL JC, BERNARD P, et al. The effect of immunoglobulin immunadsorptions on delayed xenograft rejection of human CD55 transgenic pig kidneys in baboons[J]. Xenotransplantation, 2003, 10(6): 552-561. DOI: 10.1034/j.1399-3089.2003.00052.x.
    [46] BALDAN N, RIGOTTI P, CALABRESE F, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events?[J]. Am J Transplant, 2004, 4(4): 475-481. DOI: 10.1111/j.1600-6143.2004.00407.x.
    [47] ASHTON-CHESS J, MEURETTE G, KARAM G, et al. The study of mitoxantrone as a potential immunosuppressor in transgenic pig renal xenotransplantation in baboons: comparison with cyclophosphamide[J]. Xenotransplantation, 2004, 11(2): 112-122. DOI: 10.1111/j.1399-3089.2004.00040.x.
    [48] COZZI E, SIMIONI P, BOLDRIN M, et al. Effects of long-term administration of high-dose recombinant human antithrombin in immunosuppressed primate recipients of porcine xenografts[J]. Transplantation, 2005, 80(10): 1501-1510. DOI: 10.1097/01.tp.0000178377.55615.8b.
    [49] MOSCOSO I, HERMIDA-PRIETO M, MAÑEZ R, et al. Lack of cross-species transmission of porcine endogenous retrovirus in pig-to-baboon xenotransplantation with sustained depletion of anti-alphagal antibodies[J]. Transplantation, 2005, 79(7): 777-782. DOI: 10.1097/01.tp.0000152662.55720.83.
    [50] CHEN G, QIAN H, STARZL T, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys[J]. Nat Med, 2005, 11(12): 1295-1298. DOI: 10.1038/nm1330.
    [51] YAMADA K, YAZAWA K, SHIMIZU A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 2005, 11(1): 32-34. DOI: 10.1038/nm1172.
    [52] CHEN G, SUN H, YANG H, et al. The role of anti-non-Gal antibodies in the development of acute humoral xenograft rejection of hDAF transgenic porcine kidneys in baboons receiving anti-Gal antibody neutralization therapy[J]. Transplantation, 2006, 81(2): 273-283. DOI: 10.1097/01.tp.0000188138.53502.de.
    [53] EZZELARAB M, GARCIA B, AZIMZADEH A, et al. The innate immune response and activation of coagulation in alpha1, 3-galactosyltransferase gene-knockout xenograft recipients[J]. Transplantation, 2009, 87(6): 805-812. DOI: 10.1097/TP.0b013e318199c34f.
    [54] LE BAS-BERNARDET S, TILLOU X, POIRIER N, et al. Xenotransplantation of galactosyl-transferase knockout, CD55, CD59, CD39, and fucosyl-transferase transgenic pig kidneys into baboons[J]. Transplant Proc, 2011, 43(9): 3426-3430. DOI: 10.1016/j.transproceed.2011.09.024.
    [55] NISHIMURA H, SCALEA J, WANG Z, et al. First experience with the use of a recombinant CD3 immunotoxin as induction therapy in pig-to-primate xenotransplantation: the effect of T-cell depletion on outcome[J]. Transplantation, 2011, 92(6): 641-647. DOI: 10.1097/TP.0b013e31822b92a5.
    [56] SPIEZIA L, BOLDRIN M, RADU C, et al. Thromboelastographic evaluation of coagulative profiles in pig-to-monkey kidney xenotransplantation[J]. Xenotransplantation, 2013, 20(2): 89-99. DOI: 10.1111/xen.12024.
    [57] SEKIJIMA M, WAKI S, SAHARA H, et al. Results of life-supporting galactosyltransferase knockout kidneys in cynomolgus monkeys using two different sources of galactosyltransferase knockout swine[J]. Transplantation, 2014, 98(4): 419-426. DOI: 10.1097/TP.0000000000000314.
    [58] AZIMZADEH AM, KELISHADI SS, EZZELARAB MB, et al. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein[J]. Xenotransplantation, 2015, 22(4): 310-316. DOI: 10.1111/xen.12176.
    [59] HIGGINBOTHAM L, MATHEWS D, BREEDEN CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3): 221-230. DOI: 10.1111/xen.12166.
    [60] IWASE H, LIU H, WIJKSTROM M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date[J]. Xenotransplantation, 2015, 22(4): 302-309. DOI: 10.1111/xen.12174.
    [61] RIVARD CJ, TANABE T, LANASPA MA, et al. Upregulation of CD80 on glomerular podocytes plays an important role in development of proteinuria following pig-to-baboon xeno-renal transplantation - an experimental study[J]. Transpl Int, 2018, 31(10): 1164-1177. DOI: 10.1111/tri.13273.
    [62] YAMAMOTO T, HARA H, FOOTE J, et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: a comparison of two immunosuppressive regimens[J]. Transplantation, 2019, 103(10): 2090-2104. DOI: 10.1097/TP.0000000000002796.
    [63] MA D, HIROSE T, LASSITER G, et al. Kidney transplantation from triple-knockout pigs expressing multiple human proteins in cynomolgus macaques[J]. Am J Transplant, 2022, 22(1): 46-57. DOI: 10.1111/ajt.16780.
    [64] IWASE H, JAGDALE A, YAMAMOTO T, et al. Evidence suggesting that deletion of expression of N-glycolylneuraminic acid (Neu5Gc) in the organ-source pig is associated with increased antibody-mediated rejection of kidney transplants in baboons[J]. Xenotransplantation, 2021, 28(4): e12700. DOI: 10.1111/xen.12700.
  • 加载中
图(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  24
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-11-15

目录

    /

    返回文章
    返回