留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习在肝移植中的应用

吴健, 曹林平. 机器学习在肝移植中的应用[J]. 器官移植, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005
引用本文: 吴健, 曹林平. 机器学习在肝移植中的应用[J]. 器官移植, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005
Wu Jian, Cao Linping. Application of machine learning in liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005
Citation: Wu Jian, Cao Linping. Application of machine learning in liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 722-729. doi: 10.3969/j.issn.1674-7445.2022.06.005

机器学习在肝移植中的应用

doi: 10.3969/j.issn.1674-7445.2022.06.005
基金项目: 

浙江省卫生健康委员会项目 JBZX-202004

详细信息
    作者简介:
    通讯作者:

    吴健,Email:drwujian@zju.edu.cn

  • 中图分类号: R617, TP181

Application of machine learning in liver transplantation

More Information
  • 摘要: 机器学习可以高效地从复杂的数据库中提取特征和建立联系,通过构建模型等方式更好地预测临床疾病变化。肝移植是治疗各种终末期肝病以及原发性肝癌(肝癌)的有效方法之一,但同时也面临许多挑战,如何更有效地进行器官分配、扩大供肝来源、评估最佳供受者匹配、预测移植术后并发症、疾病复发及远期生存一直是研究的热点和难点。近年来,机器学习在肝移植领域中的应用亦取得了一些成果,显示出巨大的前景。本文就机器学习在肝移植术前器官分配、供肝评估,围手术期并发症预测、输血预测,术后新发疾病预测、疾病复发预测、急性排斥反应预测及远期生存预后预测中的应用现状及前景做一综述,以期为后续的研究提供思路和方向。

     

  • [1] SPANN A, YASODHARA A, KANG J, et al. Applying machine learning in liver disease and transplantation: a comprehensive review[J]. Hepatology, 2020, 71(3): 1093-1105. DOI: 10.1002/hep.31103.
    [2] TRAN J, SHARMA D, GOTLIEB N, et al. Application of machine learning in liver transplantation: a review[J]. Hepatol Int, 2022, 16(3): 495-508. DOI: 10.1007/s12072-021-10291-7.
    [3] IVANICS T, PATEL MS, ERDMAN L, et al. Artificial intelligence in transplantation (machine-learning classifiers and transplant oncology)[J]. Curr Opin Organ Transplant, 2020, 25(4): 426-434. DOI: 10.1097/MOT.0000000000000773.
    [4] KIM WR, MANNALITHARA A, HEIMBACH JK, et al. MELD 3.0: the model for end-stage liver disease updated for the modern era[J]. Gastroenterology, 2021, 161(6): 1887-1895. DOI: 10.1053/j.gastro.2021.08.050.
    [5] BRICEÑO J, AYLLÓN MD, CIRIA R. Machine-learning algorithms for predicting results in liver transplantation: the problem of donor-recipient matching[J]. Curr Opin Organ Transplant, 2020, 25(4): 406-411. DOI: 10.1097/MOT.0000000000000781.
    [6] LEE J, LEE JG, JUNG I, et al. Development of a Korean liver allocation system using model for end stage liver disease scores: a nationwide, multicenter study[J]. Sci Rep, 2019, 9(1): 7495. DOI: 10.1038/s41598-019-43965-2.
    [7] DORADO-MORENO M, PÉREZ-ORTIZ M, GUTIÉRREZ PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem[J]. Artif Intell Med, 2017, 77: 1-11. DOI: 10.1016/j.artmed.2017.02.004.
    [8] QU Z, KRAUTH C, AMELUNG VE, et al. Decision modelling for economic evaluation of liver transplantation[J]. World J Hepatol, 2018, 10(11): 837-848. DOI: 10.4254/wjh.v10.i11.837.
    [9] BERTSIMAS D, KUNG J, TRICHAKIS N, et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation[J]. Am J Transplant, 2019, 19(4): 1109-1118. DOI: 10.1111/ajt.15172.
    [10] VAGEFI PA, BERTSIMAS D, HIROSE R, et al. The rise and fall of the model for end-stage liver disease score and the need for an optimized machine learning approach for liver allocation[J]. Curr Opin Organ Transplant, 2020, 25(2): 122-125. DOI: 10.1097/MOT.0000000000000734.
    [11] CUCCHETTI A, VIVARELLI M, HEATON ND, et al. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease[J]. Gut, 2007, 56(2): 253-258. DOI: 10.1136/gut.2005.084434.
    [12] BRICEÑO J, CRUZ-RAMÍREZ M, PRIETO M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study[J]. J Hepatol, 2014, 61(5): 1020-1028. DOI: 10.1016/j.jhep.2014.05.039.
    [13] AYLLÓN MD, CIRIA R, CRUZ-RAMÍREZ M, et al. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation[J]. Liver Transpl, 2018, 24(2): 192-203. DOI: 10.1002/lt.24870.
    [14] ERSHOFF BD, LEE CK, WRAY CL, et al. Training and validation of deep neural networks for the prediction of 90-day post-liver transplant mortality using UNOS registry data[J]. Transplant Proc, 2020, 52(1): 246-258. DOI: 10.1016/j.transproceed.2019.10.019.
    [15] LU F, WU F, HU P, et al. Automatic 3D liver location and segmentation via convolutional neural network and graph cut[J]. Int J Comput Assist Radiol Surg, 2017, 12(2): 171-182. DOI: 10.1007/s11548-016-1467-3.
    [16] KAVUR AE, GEZER NS, BARIŞ M, et al. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors[J]. Diagn Interv Radiol, 2020, 26(1): 11-21. DOI: 10.5152/dir.2019.19025.
    [17] LIU Z, WANG W, ZHUANG L, et al. Clear mortality gap caused by graft macrosteatosis in Chinese patients after cadaveric liver transplantation[J]. Hepatobiliary Surg Nutr, 2020, 9(6): 739-758. DOI: 10.21037/hbsn.2019.12.02.
    [18] KIM WR, LAKE JR, SMITH JM, et al. OPTN/SRTR 2016 annual data report: liver[J]. Am J Transplant, 2018, 18(Suppl 1): 172-253. DOI: 10.1111/ajt.14559.
    [19] MOCCIA S, MATTOS LS, PATRINI I, et al. Computer-assisted liver graft steatosis assessment via learning-based texture analysis[J]. Int J Comput Assist Radiol Surg, 2018, 13(9): 1357-1367. DOI: 10.1007/s11548-018-1787-6.
    [20] CESARETTI M, BRUSTIA R, GOUMARD C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment[J]. Liver Transpl, 2020, 26(10): 1224-1232. DOI: 10.1002/lt.25801.
    [21] YERSIZ H, LEE C, KALDAS FM, et al. Assessment of hepatic steatosis by transplant surgeon and expert pathologist: a prospective, double-blind evaluation of 201 donor livers[J]. Liver Transpl, 2013, 19(4): 437-449. DOI: 10.1002/lt.23615.
    [22] SUN L, MARSH JN, MATLOCK MK, et al. Deep learning quantification of percent steatosis in donor liver biopsy frozen sections[J]. EBioMedicine, 2020, 60: 103029. DOI: 10.1016/j.ebiom.2020.103029.
    [23] PÉREZ-SANZ F, RIQUELME-PÉREZ M, MARTÍNEZ-BARBA E, et al. Efficiency of machine learning algorithms for the determination of macrovesicular steatosis in frozen sections stained with Sudan to evaluate the quality of the graft in liver transplantation[J]. Sensors (Basel), 2021, 21(6): 1993. DOI: 10.3390/s21061993.
    [24] PHAM PT, SLAVOV C, PHAM PC. Acute kidney injury after liver, heart, and lung transplants: dialysis modality, predictors of renal function recovery, and impact on survival[J]. Adv Chronic Kidney Dis, 2009, 16(4): 256-267. DOI: 10.1053/j.ackd.2009.04.002.
    [25] JUN IG, KWON HM, JUNG KW, et al The impact of postreperfusion syndrome on acute kidney injury in living donor liver transplantation: a propensity score analysis[J]. Anesth Analg, 2018, 127(2): 369-378. DOI: 10.1213/ANE.0000000000003370.
    [26] LEE HC, YOON SB, YANG SM, et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model[J]. J Clin Med, 2018, 7(11): 428. DOI: 10.3390/jcm7110428.
    [27] HE ZL, ZHOU JB, LIU ZK, et al. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 222-231. DOI: 10.1016/j.hbpd.2021.02.001.
    [28] ZHANG Y, YANG D, LIU Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation[J]. J Transl Med, 2021, 19(1): 321. DOI: 10.1186/s12967-021-02990-4.
    [29] CHEN C, YANG D, GAO S, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation[J]. Respir Res, 2021, 22(1): 94. DOI: 10.1186/s12931-021-01690-3.
    [30] CYWINSKI JB, ALSTER JM, MILLER C, et al. Prediction of intraoperative transfusion requirements during orthotopic liver transplantation and the influence on postoperative patient survival[J]. Anesth Analg, 2014, 118(2): 428-437. DOI: 10.1213/ANE.0b013e3182a76f19.
    [31] LIU LP, ZHAO QY, WU J, et al. Machine learning for the prediction of red blood cell transfusion in patients during or after liver transplantation surgery[J]. Front Med (Lausanne), 2021, 8: 632210. DOI: 10.3389/fmed.2021.632210.
    [32] KESIRAJU S, PARITALA P, RAO CH UM, et al. New onset of diabetes after transplantation-an overview of epidemiology, mechanism of development and diagnosis[J]. Transpl Immunol, 2014, 30(1): 52-58. DOI: 10.1016/j.trim.2013.10.006.
    [33] BHAT V, TAZARI M, WATT KD, et al. New-onset diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: a machine learning approach[J]. Mayo Clin Proc, 2018, 93(12): 1794-1802. DOI: 10.1016/j.mayocp.2018.06.020.
    [34] KONERMAN MA, FRITZE D, WEINBERG RL, et al. Incidence of and risk assessment for adverse cardiovascular outcomes after liver transplantation: a systematic review[J]. Transplantation, 2017, 101(7): 1645-1657. DOI: 10.1097/TP.0000000000001710.
    [35] JAIN V, BANSAL A, RADAKOVICH N, et al. Machine learning models to predict major adverse cardiovascular events after orthotopic liver transplantation: a cohort study[J]. J Cardiothorac Vasc Anesth, 2021, 35(7): 2063-2069. DOI: 10.1053/j.jvca.2021.02.006.
    [36] BELLONI-FORTINA A, PIASERICO S, BORDIGNON M, et al. Skin cancer and other cutaneous disorders in liver transplant recipients[J]. Acta Derm Venereol, 2012, 92(4): 411-415. DOI: 10.2340/00015555-1316.
    [37] TANAKA T, VOIGT MD. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation[J]. J Cancer Res Clin Oncol, 2018, 144(3): 607-615. DOI: 10.1007/s00432-018-2589-5.
    [38] MARSH JW, DVORCHIK I, SUBOTIN M, et al. The prediction of risk of recurrence and time to recurrence of hepatocellular carcinoma after orthotopic liver transplantation: a pilot study[J]. Hepatology, 1997, 26(2): 444-450. DOI: 10.1002/hep.510260227.
    [39] MARSH JW, FINKELSTEIN SD, DEMETRIS AJ, et al. Genotyping of hepatocellular carcinoma in liver transplant recipients adds predictive power for determining recurrence-free survival[J]. Liver Transpl, 2003, 9(7): 664-671. DOI: 10.1053/jlts.2003.50144.
    [40] RODRIGUEZ-LUNA H, VARGAS HE, BYRNE T, et al. Artificial neural network and tissue genotyping of hepatocellular carcinoma in liver-transplant recipients: prediction of recurrence[J]. Transplantation, 2005, 79(12): 1737-1740. DOI: 10.1097/01.tp.0000161794.32007.d1.
    [41] NAM JY, LEE JH, BAE J, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a multicenter study[J]. Cancers (Basel), 2020, 12(10): 2791. DOI: 10.3390/cancers12102791.
    [42] HE T, FONG JN, MOORE LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894. DOI: 10.1016/j.compmedimag.2021.101894.
    [43] IVANICS T, NELSON W, PATEL MS, et al. The toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine learning approach[J]. Liver Transpl, 2022, 28(4): 593-602. DOI: 10.1002/lt.26332.
    [44] WIESNER RH, LUDWIG J, KROM RA, et al. Hepatic allograft rejection: new developments in terminology, diagnosis, prevention, and treatment[J]. Mayo Clin Proc, 1993, 68(1): 69-79. DOI: 10.1016/s0025-6196(12)60022-6.
    [45] HUGHES VF, MELVIN DG, NIRANJAN M, et al. Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients[J]. Liver Transpl, 2001, 7(6): 496-503. DOI: 10.1053/jlts.2001.24642.
    [46] ZARE A, ZARE MA, ZAREI N, et al. A neural network approach to predict acute allograft rejection in liver transplant recipients using routine laboratory data[J]. Hepat Mon, 2017, 17(12): e55092. DOI: 10.5812/hepatmon.55092.
    [47] VEERANKUTTY FH, JAYAN G, YADAV MK, et al. Artificial intelligence in hepatology, liver surgery and transplantation: emerging applications and frontiers of research[J]. World J Hepatol, 2021, 13(12): 1977-1990. DOI: 10.4254/wjh.v13.i12.1977.
    [48] LIU CL, SOONG RS, LEE WC, et al. Predicting short-term survival after liver transplantation using machine learning[J]. Sci Rep, 2020, 10(1): 5654. DOI: 10.1038/s41598-020-62387-z.
    [49] HOOT N, ARONSKY D. Using Bayesian networks to predict survival of liver transplant patients[J]. AMIA Annu Symp Proc, 2005: 345-349.
    [50] KHOSRAVI B, POURAHMAD S, BAHREINI A, et al. Five years survival of patients after liver transplantation and its effective factors by neural network and Cox poroportional hazard regression models[J]. Hepat Mon, 2015, 15(9): e25164. DOI: 10.5812/hepatmon.25164.
    [51] KANTIDAKIS G, PUTTER H, LANCIA C, et al. Survival prediction models since liver transplantation-comparisons between Cox models and machine learning techniques[J]. BMC Med Res Methodol, 2020, 20(1): 277. DOI: 10.1186/s12874-020-01153-1.
    [52] AKBILGIC O, DAVIS RL. The promise of machine learning: when will it be delivered?[J]. J Card Fail, 2019, 25(6): 484-485. DOI: 10.1016/j.cardfail.2019.04.006.
  • 加载中
图(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  30
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-11-15

目录

    /

    返回文章
    返回