MOTS-c通过调节转运体MRP2表达对甘氨鹅脱氧胆酸诱导的肝细胞损伤的影响

敖宇, 张旭阳, 唐聃, 刘公伟, 黄丹, 蔡治方

敖宇, 张旭阳, 唐聃, 等. MOTS-c通过调节转运体MRP2表达对甘氨鹅脱氧胆酸诱导的肝细胞损伤的影响[J]. 器官移植. DOI: 10.12464/j.issn.1674-7445.2024278
引用本文: 敖宇, 张旭阳, 唐聃, 等. MOTS-c通过调节转运体MRP2表达对甘氨鹅脱氧胆酸诱导的肝细胞损伤的影响[J]. 器官移植. DOI: 10.12464/j.issn.1674-7445.2024278
Ao Yu, Zhang Xuyang, Tang Dan, et al. Effect of MOTS-c on hepatocyte injury induced by glycochenodeoxycholic acid by regulating transporter MRP2 expression[J]. ORGAN TRANSPLANTATION. DOI: 10.12464/j.issn.1674-7445.2024278
Citation: Ao Yu, Zhang Xuyang, Tang Dan, et al. Effect of MOTS-c on hepatocyte injury induced by glycochenodeoxycholic acid by regulating transporter MRP2 expression[J]. ORGAN TRANSPLANTATION. DOI: 10.12464/j.issn.1674-7445.2024278

MOTS-c通过调节转运体MRP2表达对甘氨鹅脱氧胆酸诱导的肝细胞损伤的影响

基金项目: 贵州省卫生健康委科学技术基金项目(WJW-2021-014)
详细信息
    作者简介:

    敖宇(ORCID 0009-0003-9291-7536),硕士,主治医师,研究方向为肝胆胰疾病,Email:907030759@qq.com

    通讯作者:

    蔡治方(ORCID 0009-0005-1961-3805),硕士,主任医师,研究方向为肝胆胰疾病,Email:2128985306@qq.com

  • 中图分类号: R617, R657.3

Effect of MOTS-c on hepatocyte injury induced by glycochenodeoxycholic acid by regulating transporter MRP2 expression

More Information
  • 摘要:
    目的 

    探讨线粒体衍生肽MOTS-c对甘氨鹅脱氧胆酸(GCDCA)诱导的人肝细胞THLE-3损伤的影响及相关机制。

    方法 

    体外培养THLE-3细胞,采用不同浓度的GCDCA和MOTS-c干预THLE-3细胞,通过细胞计数试剂盒(CCK-8)法筛选出GCDCA和MOTS-c的处理浓度。再采用GCDCA(200 µmol/L)、MOTS-c(15、30、60 µmol/L)、多药耐药蛋白2(MRP2)抑制剂Probenecid(500 µmol/L)和核因子E2相关因子2(Nrf2)抑制剂ML385(10 µmol/L)对THLE-3细胞进行处理或预处理,采用CCK-8法检测各组细胞增殖率;生化法检测各组细胞培养液中乳酸脱氢酶(LDH)水平;流式细胞术检测各组细胞凋亡率;实时荧光定量聚合酶链反应(RT-qPCR)法检测细胞中MRP2信使RNA(mRNA)水平;蛋白质印迹法检测细胞中MRP2和Nrf2蛋白表达水平。

    结果 

    随着GCDCA处理浓度的升高,THLE-3细胞增殖活性逐渐降低,细胞培养液中LDH活性及细胞凋亡水平逐渐升高,细胞中MRP2表达水平均逐渐降低(均为P<0.05)。30、60 µmol/L MOTS-c干预均可提高GCDCA暴露下THLE-3细胞增殖活性,上调细胞中MRP2和Nrf2表达水平,而降低细胞培养液中LDH活性及细胞凋亡水平(均为P<0.05)。联合Probenecid干预可部分逆转MOTS-c对GCDCA诱导的THLE-3细胞损伤的改善作用,联合ML385干预则又可部分抑制MOTS-c干预对GCDCA暴露下THLE-3细胞中MRP2表达的诱导作用。

    结论 

    MOTS-c可减轻GCDCA诱导的人肝细胞THLE-3损伤,其作用机制可能与促进Nrf2介导的MRP2表达上调有关。

    Abstract:
    Objective 

    To investigate the effects and related mechanisms of mitochondrial-derived peptide MOTS-c on glycochenodeoxycholic acid (GCDCA)-induced injury in human hepatocytes (THLE-3 cells).

    Methods 

    THLE-3 cells were cultured in vitro and treated with different concentrations of GCDCA and MOTS-c. The optimal concentrations of GCDCA and MOTS-c were determined by CCK-8 method. Subsequently, THLE-3 cells were treated or pre-treated with GCDCA (200 µmol/L), MOTS-c (15, 30, 60 µmol/L), the multidrug resistance protein 2 (MRP2) inhibitor Probenecid (500 µmol/L), and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385 (10 µmol/L). Cell proliferation was assessed by CCK-8 method. Lactate dehydrogenase (LDH) levels in the culture medium were measured by biochemical method. Cell apoptosis rates were determined by flow cytometry. MRP2 messenger RNA (mRNA) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). MRP2 and Nrf2 protein expression levels were analyzed by Western blotting.

    Results 

    As the concentration of GCDCA increased, the proliferation activity of THLE-3 cells gradually decreased, while LDH activity in the culture medium and apoptosis levels increased, and the expression levels of MRP2 in the cells decreased (all P<0.05). Treatment with 30 and 60 µmol/L MOTS-c significantly enhanced the proliferation activity of THLE-3 cells exposed to GCDCA, upregulated the expression of MRP2 and Nrf2, and reduced LDH activity and apoptosis levels (all P<0.05). Co-treatment with Probenecid partially reversed the protective effects of MOTS-c on GCDCA-induced THLE-3 cell injury, while co-treatment with ML385 partially inhibited the induction of MRP2 expression by MOTS-c in THLE-3 cells exposed to GCDCA.

    Conclusions 

    MOTS-c may alleviate GCDCA-induced injury in human hepatocytes (THLE-3 cells), and its mechanism may be related to the upregulation of MRP2 expression mediated by Nrf2.

  • 缺血-再灌注损伤(ischemia-reperfusion injury,IRI)相关性肝内胆汁淤积是肝移植术后的常见现象,患者早期主要表现为黄疸、血清总胆红素升高等,其发生机制可能与胆汁转运障碍有关。胆汁的转运需要线粒体供能,并由细胞膜上相关转运蛋白完成转运。研究证实,IRI可导致肝细胞线粒体功能障碍,形成能量代谢障碍,引起能量供应不足[1-3]。同时,IRI也可导致肝细胞膜上相关转运蛋白表达下调[4-5]。因此,IRI介导的胆汁转运障碍可能是导致肝移植术后胆汁淤积的重要原因。多药耐药蛋白2(multidrug resistance protein 2,MRP2)是一种位于细胞膜上的三磷酸腺苷(adenosine triphosphate,ATP)依赖性外排转运蛋白,需要线粒体供能,参与细胞内外多种复合物包括胆汁的转运。研究显示,MRP2在IRI及阻塞性胆汁淤积患者肝组织中低表达[5-6],而上调MRP2表达可以增加胆汁的外排,进而改善动物胆汁淤积性肝损伤[7-9],提示胆汁转运障碍可能是由IRI介导的MRP2低表达所致。

    MOTS-c是一种线粒体基因组编码的线粒体衍生肽,含有16个氨基酸,参与多种应激条件下代谢功能障碍的调节,对IRI有明显的改善作用[10-11]。有研究显示,MOTS-c可直接与核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)相互作用来激活Nrf2信号通路,从而改善线粒体功能障碍[12-13]。而且激活Nrf2可减少肝脏中胆汁酸的合成,上调MRP2的表达,从而调节胆汁酸代谢平衡[14-15]。然而,MOTS-c是否可通过调节MRP2表达改善胆汁淤积进而减轻肝损伤目前尚不明确。甘氨鹅脱氧胆酸(glycochenodeoxycholic acid,GCDCA)是一种疏水性胆汁酸,在肝组织中能与甘氨酸作用产生一种有细胞毒性的胆汁盐,其也是胆汁淤积性肝病患者血清中主要的胆汁酸成份。本研究采用GCDCA处理人肝细胞THLE-3建立体外胆汁淤积性肝损伤细胞模型,探讨MOTS-c对胆汁淤积性肝细胞损伤及MRP2表达的影响,并简要阐明其作用机制,以期为肝移植后胆汁淤积的治疗提供参考。

    人永生化肝细胞THLE-3购自中国科学院分子细胞科学卓越创新中心。GCDCA(纯度≥98.0%)、MRP2抑制剂Probenecid(纯度99.8%)和Nrf2抑制剂ML385(纯度99.96%)(美国MedChemExprss公司),DMEM培养基(美国Hyclone公司),细胞计数试剂(cell counting kit,CCK)-8、异硫氰酸荧光素(fluorescein isothiocyanate,FITC)Annexin V/碘化丙啶(propidiumiodide,PI)(北京索莱宝科技有限公司),乳酸脱氢酶(lactate dehydrogenase,LDH)试剂盒(南京建成生物工程研究所),RNA提取试剂盒、互补DNA(complementary DNA,cDNA)第一链合成试剂盒和实时荧光定量聚合酶链反应(real-time fluorescence quantitative PCR,RT-qPCR)试剂盒(武汉爱博泰克生物科技有限公司),兔抗人MRP2单克隆抗体、兔抗人Nrf2多克隆抗体和兔抗人GAPDH多克隆抗体(英国Abcam公司)。CO2培养箱、酶标仪(美国Thermo公司),流式细胞仪(美国Beckman公司),RT-qPCR仪(瑞士Roche公司),电泳仪(美国Bio-Rad公司)。本研究已通过遵义医科大学第二附属医院医学伦理审查委员会审批,豁免患者知情同意(批号:KYLL-2025-001)。

    THLE-3细胞在含10%胎牛血清的DMEM于37 ℃,5%CO2的培养箱中培养。收集对数生长期的THLE-3细胞,调整细胞密度1×104/mL并接种于96孔细胞培养板中。待细胞融合度达到90%左右时,采用不同浓度(25、50、100、200、400 µmol/L)GCDCA或不同浓度(7.5、15、30、60、120、240 µmol/L)MOTS-c分别处理THLE-3细胞,每个浓度设置3复孔,以0 µmol/L GCDCA或MOTS-c干预组作为对照组。孵育6 h后,每孔加入10 µL CCK-8溶液,2 h后在酶标仪上检测450 nm处的吸光度(A)值,计算细胞增殖率。细胞增殖率=(A实验孔-A空白孔)/(A对照孔-A空白孔)×100%。筛选出GCDCA诱导浓度和MOTS-c干预浓度。

    根据筛选出的GCDCA诱导浓度,将THLE-3细胞分为:对照组和(50、100、200 µmol/L)GCDCA组,检测各组细胞增殖率、细胞凋亡率、培养液中LDH活性及MRP2蛋白表达量。

    根据筛选出的MOTS-c的干预浓度,将THLE-3细胞分组:对照组、GCDCA组和15、30、60 µmol/L MOTS-c组。对照组不处理,剩余组均采用200 µmol/L GCDCA诱导THLE-3细胞损伤,MOTS-c组在GCDCA诱导的基础上同时加入相应浓度的MOTS-c进行处理,6 h后收集细胞,检测各组细胞增殖率、细胞凋亡率、培养液中LDH活性、细胞中MRP2信使RNA(messenger RNA,mRNA)、MRP2及Nrf2蛋白表达水平。

    根据预处理实验结果,(1)将THLE-3细胞分为4组:GCDCA组、MOTS-c组、Probenecid组和MOTS-c+Probenecid组。所有组采用200 µmol/L GCDCA诱导THLE-3细胞损伤,MOTS-c干预浓度为60 µmol/L,在GCDCA诱导前20 min,加入500 µmol/L Probenecid进行预处理[16],6 h后收集细胞,检测各组细胞增殖率、细胞凋亡率、培养液中LDH活性和细胞中MRP2蛋白表达水平。(2)将THLE-3细胞分为4组:GCDCA组、MOTS-c组、ML385组和MOTS-c+ML385组。所有组采用200 µmol/L GCDCA诱导THLE-3细胞损伤,MOTS-c干预浓度为60 µmol/L,在GCDCA诱导前20 min,加入10 µmol/L ML385进行预处理[17],6 h后收集细胞,检测各组细胞中MRP2和Nrf2蛋白表达水平。

    收集细胞培养液,离心取上清,按照LDH测定试剂盒说明书进行操作,检测各组细胞培养液中LDH活性。

    收集THLE-3细胞,调整细胞密度并以每孔3×105个细胞接种于6孔细胞培养板中,每组设置3复孔。待细胞贴壁后,按照上述分组处理细胞。6 h后,离心弃上清,收集细胞。加入100 µL结合缓冲液重悬细胞,再分别加入5 µL FITC Annexin V和PI避光孵育20 min。加入400 µL结合缓冲液混匀后,在流式细胞仪上检测各组细胞凋亡率。

    收集THLE-3细胞,采用吸附柱法提取细胞中的总RNA,根据试剂盒说明书操作合成cDNA。再以cDNA为模板,通过SYBR Green fast qPCR Mix进行扩增。引物由生工生物工程(上海)股份有限公司合成,序列为:MRP2上游引物5’-AGCAGGTATTCGTTGGTTTTCT-3’,下游引物5’-AACCAGGAGCCATGTGCCTA-3’;GAPDH上游引物5’-CCCTTAAGAGGGATGCTGCC-3’,下游引物5’-TACGGCCAAATCCGTTCACA-3’。以GAPDH为内参,采用2-∆∆Ct法计算目的基因表达水平。

    收集THLE-3细胞,裂解提取总蛋白。测定蛋白浓度后以25 µg蛋白上样量进行电泳。电泳结束后移膜,室温封闭2 h,之后置于一抗(MRP2抗体1∶2 000,Nrf2抗体1∶1 000,GAPDH抗体1∶2 500)4 ℃孵育过夜。洗膜后二抗室温孵育1 h。洗膜后滴加化学发光试剂显影曝光,采用Image J软件分析蛋白条带灰度值,以GAPDH为内参,计算蛋白表达水平。

    采用SPSS 23.0软件进行统计学分析,符合正态分布的计量资料以均数±标准差表示,多组间比较采用单因素方差分析及事后LSD检验,P<0.05为差异有统计学意义。

    随着GCDCA干预浓度的升高,THLE-3细胞增殖率逐渐降低(图1A)。不同浓度GCDCA干预后,THLE-3细胞培养液中LDH活性和细胞凋亡率均逐渐升高(图1B、C);细胞中MRP2蛋白表达水平逐渐降低(图1C、D,均为P<0.05),故选择200 µmol/L作为后续实验中GCDCA诱导THLE-3细胞损伤的干预浓度。

    图  1  GCDCA诱导THLE-3细胞损伤并抑制MRP2蛋白表达
    注:A图为细胞增殖率;B图为细胞培养液中LDH水平;C图为细胞凋亡率;D图为细胞中MRP2蛋白相对表达水平。与对照组比较,aP<0.05,bP<0.01,cP<0.001。
    Figure  1.  GCDCA induced THLE-3 cells injury and inhibited MRP2 protein expression

    低浓度MOTS-c对细胞增殖率无影响,高浓度(120、240 µmol/L)干预会抑制细胞增殖(图2A)。与对照组比较,GCDCA组细胞增殖率降低,细胞培养液中LDH活性和细胞凋亡率升高;与GCDCA组比较,30、60 µmol/L MOTS-c干预组细胞增殖率升高,细胞培养液中LDH活性和细胞凋亡率降低(图2B~D,均为P<0.05)。

    图  2  MOTS-c改善GCDCA诱导的THLE-3细胞损伤和凋亡
    注:A~B图为细胞增殖率;C图为细胞培养液中LDH水平;D图为细胞凋亡率。与对照组比较,aP<0.05;与GCDCA组比较,bP<0.05。
    Figure  2.  MOTS-c ameliorated GCDCA-induced THLE-3 cells injury and apoptosis

    与对照组比较,GCDCA组细胞中MRP2 mRNA和蛋白表达水平降低,Nrf2蛋白表达水平降低;与GCDCA组比较,30、60 µmol/L MOTS-c组细胞中MRP2 mRNA和蛋白表达水平升高,Nrf2蛋白表达水平升高(均为P<0.05,图3)。

    图  3  MOTS-c促进GCDCA诱导的THLE-3细胞中MRP2的表达水平
    注:A图为细胞中MRP2 mRNA表达水平;B图为细胞中MRP2蛋白表达水平;C图为细胞中Nrf2蛋白表达水平。与对照组比较,aP<0.05;与GCDCA组比较,bP<0.05。
    Figure  3.  MOTS-c promoted the expression of MRP2 in THLE-3 cells induced by GCDCA

    与GCDCA组比较,MOTS-c组细胞中MRP2蛋白表达水平和细胞增殖率升高,细胞培养液中LDH活性及细胞凋亡率降低,Probenecid组细胞中MRP2蛋白表达水平和细胞增殖率降低,细胞培养液中LDH活性及细胞凋亡率升高;与MOTS-c组比较,MOTS-c+Probenecid组细胞中MRP2蛋白表达水平和细胞增殖率降低,细胞培养液中LDH活性及细胞凋亡率升高(均为P<0.05,图4)。

    图  4  Probenecid部分逆转MOTS-c对GCDCA诱导的THLE-3细胞损伤和凋亡的影响
    注:A图为细胞中MRP2蛋白表达水平;B图为细胞增殖率;C图为细胞培养液中LDH水平;D图为细胞凋亡率。与GCDCA组比较,aP<0.05;与MOTS-c组比较,bP<0.05。
    Figure  4.  Probenecid partially reversed the effects of MOTS-c on GCDCA-induced injury and apoptosis in THLE-3 cells

    与GCDCA组比较,MOTS-s组Nrf2和MRP2蛋白表达水平升高,ML385组细胞中Nrf2和MRP2蛋白表达水平降低;与MOTS-c组比较,MOTS-c+ML385组细胞中Nrf2和MRP2蛋白表达水平降低(均为P<0.05,图5)。

    图  5  ML385部分逆转MOTS-c对GCDCA诱导的THLE-3细胞中Nrf2和MRP2蛋白表达水平的影响
    注:与GCDCA组比较,aP<0.05,与MOTS-c组比较,bP<0.05。
    Figure  5.  ML385 partially reversed the effects of MOTS-c on the expression levels of Nrf2 and MRP2 proteins in GCDCA-induced THLE-3 cells

    胆汁淤积是一种常见的临床事件,由胆汁形成异常或排泄受阻导致胆汁酸或胆汁盐滞留[18]。长期持续的胆汁淤积会发展为胆汁淤积性肝炎、肝纤维化、肝硬化,甚至是肝衰竭[19-20]。胆汁酸由肝脏中的胆固醇合成,是一种生理性的洗涤分子,因此具有高度的细胞毒性。在胆汁淤积中,胆汁流动障碍导致胆汁酸在肝脏中蓄积,进而导致肝细胞损伤[21]。此外,胆汁酸还可以刺激胆管细胞和星状细胞增殖,从而导致胆管增殖和肝纤维化[22]。GCDCA作为病理性肝细胞凋亡的诱导剂在血清中的积累具有临床意义,可损坏肝功能[23]。研究显示,外源性补充GCDCA可促进肝脏胆汁淤积型小鼠发生肝纤维化[24]。王文杰等[25]采用GCDCA刺激人肝细胞L-O2,结果显示细胞中促炎因子水平显著升高,炎症相关通路也被激活。因此,GCDCA体外诱导肝细胞可模拟胆汁淤积肝细胞病理状态[26]。本研究采用GCDCA处理人肝细胞THLE-3,发现细胞增殖活性降低,细胞凋亡率和LDH释放增加,表明GCDCA诱导下的THLE-3细胞损伤严重。

    MRP2是一种有机阴离子的特异性外排转运蛋白,在肝细胞小管膜上表达,其在谷胱甘肽、胆红素或葡萄糖醛酸酯的胆汁排泄过程中起关键性作用[27-28]。MRP2介导的肝胆转运被中断是胆汁淤积导致的主要肝细胞功能障碍之一[29]。有研究显示,恢复MRP2介导的转运功能可通过改善谷胱甘肽的排泄而使胆汁流量恢复正常[30]。MRP2在胆汁淤积大鼠肝组织中表达下调,上调MRP2表达有助于恢复大鼠肝功能[31]。Chen等[28]的研究也发现,抑制MRP2泛素化降解可减轻胆汁淤积性肝损伤。同样,本研究也发现MRP2在GCDCA诱导的THLE-3细胞中的表达水平降低,说明MRP2表达缺乏可能参与GCDCA诱导THLE-3细胞损伤的病理过程。

    MOTS-c是线粒体衍生肽家族的主要成员,其对线粒体功能、基因表达和代谢稳态的调节作用受到广泛关注[32-33]。在胆汁淤积过程中,线粒体是胆汁酸等细胞毒性分子作用的主要靶点之一,从而引起细胞能量危机和细胞死亡介质的释放[34]。本研究中,MOTS-c的干预显著减轻了GCDCA诱导的THLE-3细胞损伤,降低其凋亡率,提示MOTS-c可有效改善胆汁淤积肝细胞损伤。此外,本研究结果还显示,MOTS-c可上调GCDCA暴露下THLE-3细胞中MRP2和Nrf2蛋白表达水平。据报道,MOTS-c可与多种转录因子相互作用,包括Nrf2、叉头蛋白F1和信号转导和转录激活因子3等[13,35-36]。在应激状态下,MOTS-c转移至细胞核,然后调节一系列基因表达以响应代谢功能障碍[37]。而Nrf2可直接调控MRP2在小鼠肝细胞中的表达水平,且激活Nrf2/MRP通路可减弱胆管结扎小鼠的阻塞性胆汁淤积[38]。Wang等[39]的研究结果也证实,激活Nrf2介导的尿苷二磷酸葡萄糖醛酸转移酶和胆盐输出泵/MRP2信号通路可显著减轻萘异硫氰酸酯诱导的大鼠胆汁淤积性肝损伤。结合本研究结果及上述他人研究,推测MOTS-c减轻GCDCA对THLE-3细胞毒性作用的机制可能与激活Nrf2/MRP2通路有关。为验证此推测,本研究引入MRP2抑制剂Probenecid与MOTS-c联合干预GCDCA诱导下的THLE-3细胞,发现细胞损伤加重,凋亡率升高;而Nrf2抑制剂ML385与MOTS-c的联合干预使THLE-3细胞中MRP2表达下调,提示抑制Nrf2/MRP2信号传导可部分逆转MOTS-c对GCDCA诱导THLE-3细胞损伤的改善作用。

    综上所述,MOTS-c可通过促进Nrf2的表达以上调MRP2在肝细胞中的表达水平,从而减轻GCDCA诱导的胆汁淤积性肝细胞损伤。虽然MOTS-c在氧化应激和线粒体功能障碍方面的研究较多,但其对胆汁淤积线粒体损伤的影响尚不明确,这将在后续研究中进一步探讨。

  • 图  1   GCDCA诱导THLE-3细胞损伤并抑制MRP2蛋白表达

    注:A图为细胞增殖率;B图为细胞培养液中LDH水平;C图为细胞凋亡率;D图为细胞中MRP2蛋白相对表达水平。与对照组比较,aP<0.05,bP<0.01,cP<0.001。

    Figure  1.   GCDCA induced THLE-3 cells injury and inhibited MRP2 protein expression

    图  2   MOTS-c改善GCDCA诱导的THLE-3细胞损伤和凋亡

    注:A~B图为细胞增殖率;C图为细胞培养液中LDH水平;D图为细胞凋亡率。与对照组比较,aP<0.05;与GCDCA组比较,bP<0.05。

    Figure  2.   MOTS-c ameliorated GCDCA-induced THLE-3 cells injury and apoptosis

    图  3   MOTS-c促进GCDCA诱导的THLE-3细胞中MRP2的表达水平

    注:A图为细胞中MRP2 mRNA表达水平;B图为细胞中MRP2蛋白表达水平;C图为细胞中Nrf2蛋白表达水平。与对照组比较,aP<0.05;与GCDCA组比较,bP<0.05。

    Figure  3.   MOTS-c promoted the expression of MRP2 in THLE-3 cells induced by GCDCA

    图  4   Probenecid部分逆转MOTS-c对GCDCA诱导的THLE-3细胞损伤和凋亡的影响

    注:A图为细胞中MRP2蛋白表达水平;B图为细胞增殖率;C图为细胞培养液中LDH水平;D图为细胞凋亡率。与GCDCA组比较,aP<0.05;与MOTS-c组比较,bP<0.05。

    Figure  4.   Probenecid partially reversed the effects of MOTS-c on GCDCA-induced injury and apoptosis in THLE-3 cells

    图  5   ML385部分逆转MOTS-c对GCDCA诱导的THLE-3细胞中Nrf2和MRP2蛋白表达水平的影响

    注:与GCDCA组比较,aP<0.05,与MOTS-c组比较,bP<0.05。

    Figure  5.   ML385 partially reversed the effects of MOTS-c on the expression levels of Nrf2 and MRP2 proteins in GCDCA-induced THLE-3 cells

  • [1]

    HOU J, TOLBERT E, BIRKENBACH M, et al. Treprostinil alleviates hepatic mitochondrial injury during rat renal ischemia-reperfusion injury[J]. Biomedecine Pharmacother, 2021, 143: 112172. DOI: 10.1016/j.biopha.2021.112172.

    [2]

    KOC S, DOGAN H O, KARATAS O, et al. Mitochondrial homeostasis and mast cells in experimental hepatic ischemia-reperfusion injury of rats[J]. Turk J Gastroenterol, 2022, 33(9): 777-784. DOI: 10.5152/tjg.2022.21911.

    [3]

    WANG L, FENG Z J, MA X, et al. Mitochondrial quality control in hepatic ischemia-reperfusion injury[J]. Heliyon, 2023, 9(7): e17702. DOI: 10.1016/j.heliyon.2023.e17702.

    [4]

    MONTI C, AUDI S H, WOMACK J, et al. Physiologically-based pharmacokinetic modeling of blood clearance of liver fluorescent markers for the assessment of the degree of hepatic ischemia-reperfusion injury[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2023, 2023: 1-6. DOI: 10.1109/EMBC40787.2023.10340273.

    [5] 徐王刚, 曾仲, 段键, 等. 缺血再灌注损伤介导MRP2表达下调对DCD供体肝移植术后胆红素代谢的影响[J]. 昆明医科大学学报, 2020, 41(10): 96-100.

    XU W G, ZENG Z, DUAN J, et al. Downregulation of MRP2 expression on bilirubin metabolism after liver transplantation from DCD donors[J]. J Kunming Med Univ, 2020, 41(10): 96-100.

    [6] 吴晓平, 张保新, 张晓娟, 等. 多耐药相关蛋白MRP2与核受体RXRα、RARα在人阻塞性胆汁淤积肝组织中的表达变化[J]. 胃肠病学和肝病学杂志, 2011, 20(8): 769-770. DOI: 10.3969/j.issn.1006-5709.2011.08.026.

    WU X P, ZHANG B X, ZHANG X J, et al. Changes of MRP2, RXRα and RARα expression in liver tissues of patients with obstructive cholestasis[J]. Chin J Gastroenterol Hepatol, 2011, 20(8): 769-770. DOI: 10.3969/j.issn.1006-5709.2011.08.026.

    [7]

    WANG R, YUAN T, SUN J, et al. Paeoniflorin alleviates 17α-ethinylestradiol-induced cholestasis via the farnesoid X receptor-mediated bile acid homeostasis signaling pathway in rats[J]. Front Pharmacol, 2022, 13: 1064653. DOI: 10.3389/fphar.2022.1064653.

    [8]

    ZU Y, LIU Y, LAN L, et al. Consecutive baicalin treatment relieves its accumulation in rats with intrahepatic cholestasis by increasing MRP2 expression[J]. Heliyon, 2023, 9(1): e12689. DOI: 10.1016/j.heliyon.2022.e12689.

    [9]

    HUA W, ZHANG S, LU Q, et al. Protective effects of n-Butanol extract and iridoid glycosides of Veronica ciliata Fisch. against ANIT-induced cholestatic liver injury in mice[J]. J Ethnopharmacol, 2021, 266: 113432. DOI: 10.1016/j.jep.2020.113432.

    [10] 王毓, 彭建业, 朱明燕. MOTS-c肽对心肌缺血再灌注大鼠心肌损伤的保护作用[J]. 安徽医科大学学报, 2024, 59(8): 1405-1410. DOI: 10.19405/j.cnki.issn1000-1492.2024.08.017.

    WANG Y, PENG J Y, ZHU M Y. Protective effect of MOTS-c peptide on myocardial injury in rats with myocardial ischemia reperfusion[J]. Acta Univ Med Anhui, 2024, 59(8): 1405-1410. DOI: 10.19405/j.cnki.issn1000-1492.2024.08.017.

    [11]

    LU P, LI X, LI B, et al. The mitochondrial-derived peptide MOTS-c suppresses ferroptosis and alleviates acute lung injury induced by myocardial ischemia reperfusion via PPARγ signaling pathway[J]. Eur J Pharmacol, 2023, 953: 175835. DOI: 10.1016/j.ejphar.2023.175835.

    [12]

    ZHANG Y, HUANG J, ZHANG Y, et al. The mitochondrial-derived peptide MOTS-c alleviates radiation pneumonitis via an Nrf2-dependent mechanism[J]. Antioxidants, 2024, 13(5): 613. DOI: 10.3390/antiox13050613.

    [13]

    XIAO J, ZHANG Q, SHAN Y, et al. The mitochondrial-derived peptide (MOTS-c) interacted with Nrf2 to defend the antioxidant system to protect dopaminergic neurons against rotenone exposure[J]. Mol Neurobiol, 2023, 60(10): 5915-5930. DOI: 10.1007/s12035-023-03443-3.

    [14]

    LIU J, LICKTEIG A J, ZHANG Y, et al. Activation of Nrf2 decreases bile acid concentrations in livers of female mice[J]. Xenobiotica, 2021, 51(5): 605-615. DOI: 10.1080/00498254.2021.1880033.

    [15]

    ZHANG Y, LICKTEIG A J, LIU J, et al. Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice[J]. Toxicol Appl Pharmacol, 2020, 403: 115170. DOI: 10.1016/j.taap.2020.115170.

    [16]

    JEMNITZ K, VERES Z, TUGYI R, et al. Biliary efflux transporters involved in the clearance of rosuvastatin in sandwich culture of primary rat hepatocytes[J]. Toxicol In Vitro, 2010, 24(2): 605-610. DOI: 10.1016/j.tiv.2009.10.009.

    [17]

    XIONG Y, WANG Y, ZHANG J, et al. hPMSCs protects against D-galactose-induced oxidative damage of CD4+ T cells through activating Akt-mediated Nrf2 antioxidant signaling[J]. Stem Cell Res Ther, 2020, 11(1): 468. DOI: 10.1186/s13287-020-01993-0.

    [18] 李其泽, 樊程, 赵晓松, 等. 婴儿胆汁淤积症的病因及临床指标分析[J]. 中华肝脏病杂志, 2024, 32(9): 813-819. DOI: 10.3760/cma.j.cn501113-20230905-00091.

    LI Q Z, FAN C, ZHAO X S, et al. Analysis of the etiology and clinical indicators of infantile cholestasis[J]. Chin J Hepatol, 2024, 32(9): 813-819. DOI: 10.3760/cma.j.cn501113-20230905-00091.

    [19] 张继平. 胆汁淤积性肝病的病理学诊断[J]. 临床肝胆病杂志, 2024, 40(6): 1093-1099. DOI: 10.12449/JCH240605.

    ZHANG J P. Pathological diagnosis of cholestatic liver disease[J]. J Clin Hepatol, 2024, 40(6): 1093-1099. DOI: 10.12449/JCH240605.

    [20]

    ZHOU C, PAN X, HUANG L, et al. Fibroblast growth factor 21 ameliorates cholestatic liver injury via a hepatic FGFR4-JNK pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1): 166870. DOI: 10.1016/j.bbadis.2023.166870.

    [21]

    HUANG L, LI Y, TANG R, et al. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation[J]. Life Sci, 2024, 338: 122380. DOI: 10.1016/j.lfs.2023.122380.

    [22]

    CAI S Y, BOYER J L. The role of bile acids in cholestatic liver injury[J]. Ann Transl Med, 2021, 9(8): 737. DOI: 10.21037/atm-20-5110.

    [23]

    DOTAN M, FRIED S, HAR-ZAHAV A, et al. Periductal bile acid exposure causes cholangiocyte injury and fibrosis[J]. PLoS One, 2022, 17(3): e0265418. DOI: 10.1371/journal.pone.0265418.

    [24]

    HOHENESTER S, KANITZ V, KREMER A E, et al. Glycochenodeoxycholate promotes liver fibrosis in mice with hepatocellular cholestasis[J]. Cells, 2020, 9(2): 281. DOI: 10.3390/cells9020281.

    [25] 王文杰, 解达伟, 黄通, 等. 核因子-κB信号通路在胆汁淤积性肝损伤中的作用及其机制[J]. 中华实验外科杂志, 2020, 37(10): 1819-1822. DOI: 10.3760/cma.j.cn421213-20200324-01106.

    WANG W J, XIE D W, HUANG T, et al. The role of nuclear factor-κB signaling in bile acid-induced liver injury in cholestasis[J]. Chin J Exp Surg, 2020, 37(10): 1819-1822. DOI: 10.3760/cma.j.cn421213-20200324-01106.

    [26] 陈思. 纳米NAD+通过SIRT1/PGC-1α/TFAM通路治疗胆汁淤积的研究[D]. 重庆: 重庆医科大学, 2022.
    [27]

    MAZZA T, ROUMELIOTIS T I, GARITTA E, et al. Structural basis for the modulation of MRP2 activity by phosphorylation and drugs[J]. Nat Commun, 2024, 15(1): 1983. DOI: 10.1038/s41467-024-46392-8.

    [28]

    CHEN J, WU H, TANG X, et al. 4-Phenylbutyrate protects against rifampin-induced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress[J]. Bioengineered, 2022, 13(2): 2866-2877. DOI: 10.1080/21655979.2021.2024970.

    [29]

    BEER A J, HERTZ D, SEEMANN E, et al. Reduced MRP2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis[J]. Sci Rep, 2020, 10(1): 13110. DOI: 10.1038/s41598-020-69901-3.

    [30]

    RAZORI M V, MARTÍN P L, MAIDAGAN P M, et al. Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving MRP2 function: role of transcriptional and post-transcriptional mechanisms[J]. Life Sci, 2020, 259: 118352. DOI: 10.1016/j.lfs.2020.118352.

    [31]

    KIM M J, KANG Y J, KWON M, et al. Ursodeoxycholate restores biliary excretion of methotrexate in rats with ethinyl estradiol induced-cholestasis by restoring canalicular MRP2 expression[J]. Int J Mol Sci, 2018, 19(4): 1120. DOI: 10.3390/ijms19041120.

    [32]

    GAO Y, WEI X, WEI P, et al. MOTS-c functionally prevents metabolic disorders[J]. Metabolites, 2023, 13(1): 125. DOI: 10.3390/metabo13010125.

    [33]

    ZHENG Y, WEI Z, WANG T. MOTS-c: a promising mitochondrial-derived peptide for therapeutic exploitation[J]. Front Endocrinol, 2023, 14: 1120533. DOI: 10.3389/fendo.2023.1120533.

    [34]

    HEIDARI R, NIKNAHAD H. The role and study of mitochondrial impairment and oxidative stress in cholestasis[J]. Methods Mol Biol, 2019, 1981: 117-132. DOI: 10.1007/978-1-4939-9420-5_8.

    [35]

    WENG F B, ZHU L F, ZHOU J X, et al. MOTS-c accelerates bone fracture healing by stimulating osteogenesis of bone marrow mesenchymal stem cells via positively regulating FOXF1 to activate the TGF-β pathway[J]. Eur Rev Med Pharmacol Sci, 2021, 25(6): 2459. DOI: 10.26355/eurrev_202103_25396.

    [36]

    ZHAI D, YE Z, JIANG Y, et al. MOTS-c peptide increases survival and decreases bacterial load in mice infected with MRSA[J]. Mol Immunol, 2017, 92: 151-160. DOI: 10.1016/j.molimm.2017.10.017.

    [37]

    MOHTASHAMI Z, SINGH M K, SALIMIAGHDAM N, et al. MOTS-c, the most recent mitochondrial derived peptide in human aging and age-related diseases[J]. Int J Mol Sci, 2022, 23(19): 11991. DOI: 10.3390/ijms231911991.

    [38]

    CHEN P, LI J, FAN X, et al. Oleanolic acid attenuates obstructive cholestasis in bile duct-ligated mice, possibly via activation of NRF2-MRPs and FXR antagonism[J]. Eur J Pharmacol, 2015, 765: 131-139. DOI: 10.1016/j.ejphar.2015.08.029.

    [39]

    WANG X, XIONG W, WANG X, et al. Ursolic acid attenuates cholestasis through Nrf2-mediated regulation of UGT2B7 and BSEP/MRP2[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(4): 2257-2267. DOI: 10.1007/s00210-023-02733-w.

图(5)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-16
  • 网络出版日期:  2025-03-17

目录

/

返回文章
返回