Turn off MathJax
Article Contents
Zhu Yuexing, Chen Chao, Xu Ye, et al. Single cell sequencing reveals the antigen presentation characteristics of dendritic cells and B cells in cardiac grafts[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024115
Citation: Zhu Yuexing, Chen Chao, Xu Ye, et al. Single cell sequencing reveals the antigen presentation characteristics of dendritic cells and B cells in cardiac grafts[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024115

Single cell sequencing reveals the antigen presentation characteristics of dendritic cells and B cells in cardiac grafts

doi: 10.3969/j.issn.1674-7445.2024115
More Information
  • Corresponding author: Dai Helong, Email: helong68888@163.com
  • Received Date: 2024-04-23
    Available Online: 2024-07-08
  •   Objective  To investigate the antigen presentation characteristics of dendritic cells (DC) and B cells in cardiac grafts.   Methods  The heart of BALB/c mice was transplanted into the abdominal cavity of C57BL/6J mice. CD45+ cells in the heart graft were extracted and sorted by flow cytometry at postoperative 5 d, and single cell RNA sequencing was performed. Taking DC and B cell subsets in cardiac grafts as the main study cells, the changing trend, antigen presenting ability and intercellular communication with T cells after heart transplantation were analyzed by bioinformatics analysis and flow cytometry. Gene ontology (GO) function enrichment difference analysis was adopted to prove the specific function and the reliability annotation of cell subsets.   Results  Germinal center-like B cell (GC-L B) was the B cell subset with the largest increase in quantity during the acute rejection phase, accounting for 87%. Classical DC (cDC) 2 was the only DC subset with a significant increase in quantity during acute rejection of heart transplantation, accounting for 44% of DC subset, and it occupied the highest communication intensity with T cells after heart transplantation. Mononucleated DC (moDC) and memory B cell (MBC) were the main transmitters of T cell input signals non-transplanted hearts, whereas transformed into cDC2 and GC-L B during the acute rejection phase. Among them, MBC and GC-L B were the main sources of T cell input signals in non-transplanted hearts and heart grafts.   Conclusions  Compared with DC, B cells occupy a higher number and weight in the intercellular communication with T cells before and after heart transplantation, prompting that the antigen presenting activity of B cells is more active and stronger than DC in the early stage of acute rejection of heart transplantation.

     

  • loading
  • [1]
    HENNESSY C, LEWIK G, CROSS A, et al. Recent advances in our understanding of the allograft response[J]. Fac Rev, 2021, 10: 21. DOI: 10.12703/r/10-21.
    [2]
    SHORT S, LEWIK G, ISSA F. An immune atlas of T cells in transplant rejection: pathways and therapeutic opportunities[J]. Transplantation, 2023, 107(11): 2341-2352. DOI: 10.1097/TP.0000000000004572.
    [3]
    ZHUANG Q, LIU Q, DIVITO SJ, et al. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection[J]. Nat Commun, 2016, 7: 12623. DOI: 10.1038/ncomms12623.
    [4]
    SUN K, FAN C, ZHANG J, et al. Prevention of alloimmune rejection using XBP1-deleted bone marrow-derived dendritic cells in heart transplantation[J]. J Heart Lung Transplant, 2022, 41(12): 1660-1671. DOI: 10.1016/j.healun.2022.08.010.
    [5]
    YUAN S, CHEN Y, ZHANG M, et al. Overexpression of miR-223 promotes tolerogenic properties of dendritic cells involved in heart transplantation tolerance by targeting Irak1[J]. Front Immunol, 2021, 12: 676337. DOI: 10.3389/fimmu.2021.676337.
    [6]
    WANG B, ZHOU Q, LI T, et al. Preventing alloimmune rejection using circular RNA FSCN1-silenced dendritic cells in heart transplantation[J]. J Heart Lung Transplant, 2021, 40(7): 584-594. DOI: 10.1016/j.healun.2021.03.025.
    [7]
    张轶西, 宋飞玉, 郭义文, 等. Dectin-1过表达对树突状细胞成熟的抑制作用及其对小鼠心脏移植物免疫耐受的诱导作用[J]. 吉林大学学报(医学版), 2023, 49(4): 994-1000. DOI: 10.13481/j.1671-587X.20230421.

    ZHANG YX, SONG FY, GUO YW, et al. Inhibitory effect of Dectin-1 over-expression on maturation of dendritic cells and its induction effect on immune tolerance of heart allografts in mice[J]. J Jilin Univ Med Ed, 2023, 49(4): 994-1000. DOI: 10.13481/j.1671-587X.20230421.
    [8]
    YIN X, CHEN S, EISENBARTH SC. Dendritic cell regulation of T helper cells[J]. Annu Rev Immunol, 2021, 39: 759-790. DOI: 10.1146/annurev-immunol-101819-025146.
    [9]
    GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny[J]. Nat Rev Immunol, 2014, 14(8): 571-578. DOI: 10.1038/nri3712.
    [10]
    冯萌, 林玮. 树突状细胞亚群及其在疾病中的作用研究进展[J]. 中国免疫学杂志, 2022, 38(16): 2020-2025. DOI: 10.3969/j.issn.1000-484X.2022.16.019.

    FENG M, LIN W. Advances in dendritic cell subsets and their role in diseases[J]. Chin J Immunol, 2022, 38(16): 2020-2025. DOI: 10.3969/j.issn.1000-484X.2022.16.019.
    [11]
    HEEGER PS, HARO MC, JORDAN S. Translating Bcell immunology to the treatment of antibody-mediated allograft rejection[J]. Nat Rev Nephrol, 2024, 20: 218-232. DOI: 10.1038/s41581-023-00791-0.
    [12]
    LOUIS K, MACEDO C, LEFAUCHEUR C, et al. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection[J]. Trends Mol Med, 2022, 28(3): 237-250. DOI: 10.1016/j.molmed.2022.01.002.
    [13]
    BAERT L, MAHMUDUL HM, STEGALL M, et al. B cell-mediated immune regulation and the quest for transplantation tolerance[J]. Transplantation, 2024: 00007890-990000000-00669. DOI: 10.1097/TP.0000000000004948.
    [14]
    KWUN J, MANOOK M, PAGE E, et al. Crosstalk between T and B cells in the germinal center after transplantation[J]. Transplantation, 2017, 101(4): 704-712. DOI: 10.1097/TP.0000000000001588.
    [15]
    KENNEDY DE, OKOREEH MK, MAIENSCHEIN-CLINE M, et al. Novel specialized cell state and spatial compartments within the germinal center[J]. Nat Immunol, 2020, 21(6): 660-670. DOI: 10.1038/s41590-020-0660-2.
    [16]
    MAYER CT, GAZUMYAN A, KARA EE, et al. The microanatomic segregation of selection by apoptosis in the germinal center[J]. Science, 2017, 358(6360): eaao2602. DOI: 10.1126/science.aao2602.
    [17]
    URSCHEL S. Not just for the birds: The emerging role of B cells in transplant immunology[J]. J Heart Lung Transplant, 2021, 40(10): 1133-1134. DOI: 10.1016/j.healun.2021.07.006.
    [18]
    DIJKE EI, PLATT JL, BLAIR P, et al. B cells in transplantation[J]. J Heart Lung Transplant, 2016, 35(6): 704-710. DOI: 10.1016/j.healun.2016.01.1232.
    [19]
    AWAD MA, SHAH A, GRIFFITH BP. Current status and outcomes in heart transplantation: a narrative review[J]. Rev Cardiovasc Med, 2022, 23(1): 11. DOI: 10.31083/j.rcm2301011.
    [20]
    BOULET J, KELLEHER J, WANDERLEY MRBJ, et al. Outcomes of untreated subclinical antibody-mediated rejection after heart transplantation[J]. Prog Cardiovasc Dis, 2023, 81: 48-53. DOI: 10.1016/j.pcad.2023.10.001.
    [21]
    CHRYSAKIS N, MAGOULIOTIS DE, SPILIOPOULOS K, et al. Heart transplantation[J]. J Clin Med, 2024, 13(2): 558. DOI: 10.3390/jcm13020558.
    [22]
    HAN J, MOAYEDI Y, HENRICKSEN EJ, et al. Primary graft dysfunction is associated with development of early cardiac allograft vasculopathy, but not other immune-mediated complications, after heart transplantation[J]. Transplantation, 2023, 107(7): 1624-1629. DOI: 10.1097/TP.0000000000004551.
    [23]
    LI T, ZHANG Z, BARTOLACCI JG, et al. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection[J]. J Clin Invest, 2020, 130(10): 5397-5412. DOI: 10.1172/JCI133008.
    [24]
    WEISEL NM, JOACHIM SM, SMITA S, et al. Surface phenotypes of naive and memory B cells in mouse and human tissues[J]. Nat Immunol, 2022, 23(1): 135-145. DOI: 10.1038/s41590-021-01078-x.
    [25]
    KING HW, ORBAN N, RICHES JC, et al. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics[J]. Sci Immunol, 2021, 6(56): eabe6291. DOI: 10.1126/sciimmunol.abe6291.
    [26]
    XIA J, XIE Z, NIU G, et al. Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer[J]. Immunology, 2023, 168(1): 135-151. DOI: 10.1111/imm.13568.
    [27]
    SATPATHY AT, WU X, ALBRING JC, et al. Re(de)fining the dendritic cell lineage[J]. Nat Immunol, 2012, 13(12): 1145-1154. DOI: 10.1038/ni.2467.
    [28]
    WORBS T, HAMMERSCHMIDT SI, FÖRSTER R. Dendritic cell migration in health and disease[J]. Nat Rev Immunol, 2017, 17(1): 30-48. DOI: 10.1038/nri.2016.116.
    [29]
    SEE SB, MANTELL BS, CLERKIN KJ, et al. Profiling non-HLA antibody responses in antibody-mediated rejection following heart transplantation[J]. Am J Transplant, 2020, 20(9): 2571-2580. DOI: 10.1111/ajt.15871.
    [30]
    COUTANCE G, ZOUHRY I, LOUPY A, et al. Correlation between microvascular inflammation in endomyocardial biopsies and rejection transcripts, donor-specific antibodies and graft dysfunction in antibody-mediated rejection[J]. Arch Cardiovasc Dis Suppl, 2022, 14(1): 123-124. DOI: 10.1016/j.acvdsp.2021.09.277.
    [31]
    COSTA D, PICASCIA A, GRIMALDI V, et al. Role of HLA matching and donor specific antibody development in long-term survival, acute rejection and cardiac allograft vasculopathy[J]. Transpl Immunol, 2024, 83: 102011. DOI: 10.1016/j.trim.2024.102011.
    [32]
    杨守国. 心脏移植术后抗体介导排斥反应研究现况与进展[J/OL]. 中华移植杂志(电子版), 2022, 16(5): 266-276. DOI: 10.3877/cma.j.issn.1674-3903.2022.05.002.

    YANG SG. Current status and progress on antibody-mediated rejection in heart transplantation[J/OL]. Chin J Transplant (Electr Edit), 2022, 16(5): 266-276. DOI: 10.3877/cma.j.issn.1674-3903.2022.05.002.
    [33]
    ANDERSON DA 3RD, MURPHY KM, BRISEÑO CG. Development, diversity, and function of dendritic cells in mouse and human[J]. Cold Spring Harb Perspect Biol, 2018, 10(11): a028613. DOI: 10.1101/cshperspect.a028613.
    [34]
    BOSTEELS C, NEYT K, VANHEERSWYNGHELS M, et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection[J]. Immunity, 2020, 52(6): 1039-1056. e9. DOI: 10.1016/j.immuni.2020.04.005.
    [35]
    ZHAO Y, GAO C, LIU L, et al. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming[J]. J Leukoc Biol, 2023, 114(3): 212-222. DOI: 10.1093/jleuko/qiad062.
    [36]
    BACKER RA, PROBST HC, CLAUSEN BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship[J]. Eur J Immunol, 2023, 53(3): e2149548. DOI: 10.1002/eji.202149548.
    [37]
    JIANG X, SHIMAOKA T, KOJO S, et al. Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance[J]. J Immunol, 2005, 175(4): 2051-2055. DOI: 10.4049/jimmunol.175.4.2051.
    [38]
    JIANG X, SUN W, ZHU L, et al. Expression of CXCR6 on CD8+ T cells was up-regulated in allograft rejection[J]. Transpl Immunol, 2010, 22(3/4): 179-183. DOI: 10.1016/j.trim.2009.12.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return