Volume 15 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
Xu Yuan, Hou Shuang, Chen Qian, et al. Correlation between metabolic markers and blood lipid levels in kidney transplant recipients[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014
Citation: Xu Yuan, Hou Shuang, Chen Qian, et al. Correlation between metabolic markers and blood lipid levels in kidney transplant recipients[J]. ORGAN TRANSPLANTATION, 2024, 15(4): 599-606. doi: 10.3969/j.issn.1674-7445.2024014

Correlation between metabolic markers and blood lipid levels in kidney transplant recipients

doi: 10.3969/j.issn.1674-7445.2024014
More Information
  •   Objective   To analyze the co-expressed genes in blood lipid metabolism, hyperlipidemia and tacrolimus metabolism and their correlation with blood lipid levels in kidney transplant recipients.   Methods  Co-expressed genes were screened from Comparative Toxicogenomic Database (CTD). Baseline data of 25 kidney transplant recipients were collected. The expression levels of ATP binding cassette subfamily A member 1(ABCA1), peroxisome proliferator activated receptor γ (PPAR-γ) and glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 (GPIHBP1) were measured. All recipients were followed up. The concentrations of fasting blood glucose, glycosylated hemoglobin, triglyceride, total protein, albumin, globulin, cholesterol, high-density lipoprotein, low-density lipoprotein and tacrolimus blood concentration were collected at postoperative 1, 3, 6 and 12 months, and the incidence of hyperlipidemia in the recipients was analyzed. The correlation between ABCA1, GPIHBP1, PPAR-γ and clinical indexes was assessed. The diagnostic efficiency of related indexes for hyperlipidemia after kidney transplantation was evaluated.   Results  Three co-expressed genes including ABCA1, PPAR-γ and GPIHBP1 were screened. ABCA1 was positively correlated with cholesterol level at postoperative 6 months and tacrolimus blood concentration at postoperative 3 months, whereas negatively correlated with fasting blood glucose level at postoperative 3 months (all P<0.05). GPIHBP1 was negatively correlated with preoperative cholesterol and triglyceride levels, whereas positively correlated with tacrolimus blood concentration at postoperative 3 months (all P<0.05). PPAR-γ was negatively correlated with preoperative globulin and low-density lipoprotein levels (both P<0.05). ABCA1, GPIHBP1 and PPAR-γ combined with preoperative globulin and blood glucose level at postoperative 1 and 6 months after operation yielded high diagnostic efficiency for hypertriglyceridemia after kidney transplantation (AUC=0.900). ABCA1, GPIHBP1 and PPAR-γ combined with tacrolimus blood concentrations at postoperative 1 and 6 months and blood glucose level at postoperative 6 months had high diagnostic efficiency for hypercholesterolemia after kidney transplantation (AUC=0.931).   Conclusions  ABCA1, GPIHBP1 and PPAR-γ are correlated with blood lipid level and tacrolimus blood concentration after kidney transplantation to different degrees. No definite evidence has been supported for predicting hyperlipidemia after kidney transplantation. Immunity improvement and rational blood glucose management may be beneficial factors for hyperlipidemia control.

     

  • loading
  • [1]
    LIBERZON A, BIRGER C, THORVALDSDÓTTIR H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. DOI: 10.1016/j.cels.2015.12.004.
    [2]
    高甘油三酯血症临床管理多学科专家共识工作组. 高甘油三酯血症临床管理多学科专家共识[J]. 中国循环杂志, 2023, 38(6): 621-633. DOI: 10.3969/j.issn.1000-3614.2023.06.003.

    The Task Force for Multidisciplinary Expert Consensus on the Clinical Management of Hypertriglyceridemia. Multidisciplinary expert consensus on the clinical management of hypertriglyceridemia[J]. Chin Circ J, 2023, 38(6): 621-633. DOI: 10.3969/j.issn.1000-3614.2023.06.003.
    [3]
    王小惠, 白新秀, 朱姗姗, 等. 副干酪乳杆菌抑制动脉粥样硬化进展的作用及其机制[J]. 中山大学学报(医学科学版), 2022, 43(1): 51-60. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0107.

    WANG XH, BAI XX, ZHU SS, et al. Effects and mechanisms of lactobacillus paracasei on the prevention of atherosclerosis[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 51-60. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0107.
    [4]
    AGGARWAL R, YEH RW, JOYNT MADDOX KE, et al. Cardiovascular risk factor prevalence, treatment, and control in US adults aged 20 to 44 years, 2009 to March 2020[J]. JAMA, 2023, 329(11): 899-909. DOI: 10.1001/jama.2023.2307.
    [5]
    YU G. Gene ontology semantic similarity analysis using GOSemSim[J]. Methods Mol Biol, 2020, 2117: 207-215. DOI: 10.1007/978-1-0716-0301-7_11.
    [6]
    CHEN L, PENG Y, JI C, et al. Network pharmacology-based analysis of the role of tacrolimus in liver transplantation[J]. Saudi J Biol Sci, 2021, 28(3): 1569-1575. DOI: 10.1016/j.sjbs.2020.12.050.
    [7]
    RITCHIE ME, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. DOI: 10.1093/nar/gkv007.
    [8]
    AGHASIZADEH M, ZARE-FEYZABADI R, KAZEMI T, et al. A haplotype of the ANGPTL3 gene is associated with CVD risk, diabetes mellitus, hypertension, obesity, metabolic syndrome, and dyslipidemia[J]. Gene, 2021, 782: 145525. DOI: 10.1016/j.gene.2021.145525.
    [9]
    文宁, 梁瑜祯. 实体器官移植的免疫抑制治疗与移植后糖尿病发生风险的关系[J]. 中华糖尿病杂志, 2023, 15(9): 895-900. DOI: 10.3760/cma.j.cn115791-20230616-00258.

    WEN N, LIANG YZ. Immunosuppressive therapy in solid organ transplantation and post-transplantation diabetes mellitus[J]. Chin J Diabetes, 2023, 15(9): 895-900. DOI: 10.3760/cma.j.cn115791-20230616-00258.
    [10]
    LI Z, XIANG J, MEI S, et al. The effect of PINK1/Parkin pathway on glucose homeostasis imbalance induced by tacrolimus in mouse livers[J]. Heliyon, 2023, 9(4): e15536. DOI: 10.1016/j.heliyon.2023.e15536.
    [11]
    沈国平, 程梁, 蒋振伟, 等. 他克莫司血药浓度及相关基因多态性对肾移植后糖尿病发生的影响[J]. 医药导报, 2022, 41(10): 1503-1508. DOI: 10.3870/j.issn.1004-0781.2022.10.021.

    SHEN GP, CHENG L, JIANG ZW, et al. Effects of tacrolimus blood drug concentration and related gene polymorphisms on the development of diabetes after renal transplantation[J]. Herald Med, 2022, 41(10): 1503-1508. DOI: 10.3870/j.issn.1004-0781.2022.10.021.
    [12]
    徐媛, 杨波, 陈成鑫, 等. 肾移植受者新发高甘油三酯血症的危险因素: 单中心分析[J]. 器官移植, 2023, 14(5): 691-699. DOI: 10.3969/j.issn.1674-7445.2023055.

    XU Y, YANG B, CHEN CX, et al. Risk factors of new-onset hypertriglyceridemia in kidney transplant recipients: a single-center analysis[J]. Organ Transplant, 2023, 14(5): 691-699. DOI: 10.3969/j.issn.1674-7445.2023055.
    [13]
    刘晓红, 李玲, 齐振华, 等. 实体器官移植术后代谢综合征及其危险因素[J]. 中华器官移植杂志, 2019, 40(5): 313-316. DOI: 10.3760/cma.j.issn.0254-1785.2019.05.014.

    LIU XH, LI L, QI ZH, et al. Metabolic syndrome and its risk factors after solid organ transplantation[J]. Chin J Organ Transplant, 2019, 40(5): 313-316. DOI: 10.3760/cma.j.issn.0254-1785.2019.05.014.
    [14]
    SHAKED A, LOZA BL, VAN LOON E, et al. Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes[J]. Nat Med, 2022, 28(5): 999-1005. DOI: 10.1038/s41591-022-01758-7.
    [15]
    TUMAYHI M, BANJI D, KHARDALI I, et al. Amphetamine-related fatalities and altered brain chemicals: a preliminary investigation using the Comparative Toxicogenomic Database[J]. Molecules, 2023, 28(12): 4787. DOI: 10.3390/molecules28124787.
    [16]
    中国血脂管理指南修订联合专家委员会. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271. DOI: 10.3969/j.issn.1000-3614.2023.03.001.

    Joint Committee on the Chinese Guidelines for Lipid Management. Chinese guidelines for lipid management (2023)[J]. Chin Circ J, 2023, 38(3): 237-271. DOI: 10.3969/j.issn.1000-3614.2023.03.001.
    [17]
    SANTOVITO D, MARCANTONIO P, MASTROIACOVO D, et al. High dose rosuvastatin increases ABCA1 transporter in human atherosclerotic plaques in a cholesterol-independent fashion[J]. Int J Cardiol, 2020, 299: 249-253. DOI: 10.1016/j.ijcard.2019.07.094.
    [18]
    郑洁琼, 王华文, 张立, 等. 健脾祛痰方通过调节PPARγ/LXRα/ABCA1通路干预血脂异常的效应机制[J]. 中华中医药学刊, 2023, 41(4): 191-195,36. DOI: 10.13193/j.issn.1673-7717.2023.04.039.

    ZHENG JQ, WANG HW, ZHANG L, et al. Mechanism of Jianpi Qutan recipe on dyslipidemia through PPARγ/LXRα/ABCA1 pathway[J]. Chin Arch Tradit Chin Med, 2023, 41(4): 191-195,36. DOI: 10.13193/j.issn.1673-7717.2023.04.039.
    [19]
    HASAN MM, HOSEN MB, RAHMAN MM, et al. Association of ATP binding cassette transporter 1 (ABCA 1) gene polymorphism with type 2 diabetes mellitus (T2DM) in Bangladeshi population[J]. Gene, 2019, 688: 151-154. DOI: 10.1016/j.gene.2018.12.003.
    [20]
    JACOBO-ALBAVERA L, DOMÍNGUEZ-PÉREZ M, MEDINA-LEYTE DJ, et al. The role of the ATP-binding cassette A1 (ABCA1) in human disease[J]. Int J Mol Sci, 2021, 22(4): 1593. DOI: 10.3390/ijms22041593.
    [21]
    YOON HY, LEE MH, SONG Y, et al. ABCA1 69C>T polymorphism and the risk of type 2 diabetes mellitus: a systematic review and updated meta-analysis[J]. Front Endocrinol (Lausanne), 2021, 12: 639524. DOI: 10.3389/fendo.2021.639524.
    [22]
    SHIM SY, YOON HY, YEE J, et al. Association between ABCA1 gene polymorphisms and plasma lipid concentration: a systematic review and meta-analysis[J]. J Pers Med, 2021, 11(9): 883. DOI: 10.3390/jpm11090883.
    [23]
    D'ELIA JA, WEINRAUCH LA. Hyperglycemia and hyperlipidemia with kidney or liver transplantation: a review[J]. Biology (Basel), 2023, 12(9): 1185. DOI: 10.3390/biology12091185.
    [24]
    GOKTEPE B, CELTIK A, KIVRATMA G, et al. Is serum magnesium level associated with serum lipid levels in kidney transplant recipients?[J]. Transplant Proc, 2023, 55(5): 1147-1151. DOI: 10.1016/j.transproceed.2023.01.041.
    [25]
    COLLADANT M, CHABANNES M, CREPIN T, et al. Triglyceride-glucose index and cardiovascular events in kidney transplant recipients[J]. Kidney Int Rep, 2023, 8(11): 2307-2314. DOI: 10.1016/j.ekir.2023.08.021.
    [26]
    ŞIRIN ME, YILMAZ M, POLAT ME, et al. Is there any association between triglyceride-glucose index and graft function in kidney transplant recipients?[J]. Transplant Proc, 2023, 55(2): 346-349. DOI: 10.1016/j.transproceed.2023.01.016.
    [27]
    SHI HB, ZHAO YY, LI Y, et al. Values of donor serum lipids and calcium in predicting graft function after kidney transplantation: a retrospective study[J]. Curr Med Sci, 2023, 43(3): 514-519. DOI: 10.1007/s11596-023-2729-2.
    [28]
    HASSOUNEH R, FLYNN S, SHEN S, et al. Impact of liver transplantation on adipose tissue compartments and its association with metabolic sequela[J]. Transplantation, 2024, 108(1): 235-241. DOI: 10.1097/TP.000000000 0004704.
    [29]
    KARABULUT D, KARABULUT U, KALYONCUOĞLU M, et al. Predictive value of triglyceride/glucose index for cardiac outcomes in non-diabetic renal transplant recipients[J]. Acta Cardiol, 2024, 79(3):319-326. DOI: 10.1080/00015385.2023.2257983.
    [30]
    NAZOIRI C, LIABEUF S, BRAZIER F, et al. Statin therapy and the incidence of atherosclerotic cardiovascular events after kidney transplantation[J]. Nephrol Dial Transplant, 2024,39(5):818-829. DOI: 10.1093/ndt/gfad217.
    [31]
    KUROOKA N, EGUCHI J, WADA J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes[J]. J Diabetes Investig, 2023, 14(10): 1148-1156. DOI: 10.1111/jdi.14056.
    [32]
    STRØM TB, TVEITA AA, BOGSRUD MP, et al. Molecular genetic testing and measurement of levels of GPIHBP1 autoantibodies in patients with severe hypertriglyceridemia: the importance of identifying the underlying cause of hypertriglyceridemia[J]. J Clin Lipidol, 2024,18(1):e80-e89. DOI: 10.1016/j.jacl.2023.11.002.
    [33]
    PLENGPANICH W, YOUNG SG, KHOVIDHUNKIT W, et al. Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain[J]. J Biol Chem, 2014, 289(28): 19491-19499. DOI: 10.1074/jbc.M114.558528.
    [34]
    IDEISHI A, SUEMATSU Y, TASHIRO K, et al. Changes in serum levels of angiopoietin-like protein-8 and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 after ezetimibe therapy in patients with dyslipidemia[J]. Clin Chim Acta, 2020, 510: 675-680. DOI: 10.1016/j.cca.2020.08.030.
    [35]
    LI X, BILALI A, QIAO R, et al. Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury[J]. Mol Med Rep, 2018, 17(5): 6759-6767. DOI: 10.3892/mmr.2018.8649.
    [36]
    ZHANG L, HE Y, WU C, et al. Altered expression of glucose metabolism associated genes in a tacrolimus-induced post-transplantation diabetes mellitus in rat model[J]. Int J Mol Med, 2019, 44(4): 1495-1504. DOI: 10.3892/ijmm.2019.4313.
    [37]
    STECHSCHULTE LA, QIU B, WARRIER M, et al. FKBP51 null mice are resistant to diet-induced obesity and the PPARγ agonist rosiglitazone[J]. Endocrinology, 2016, 157(10): 3888-3900. DOI: 10.1210/en.2015-1996.
    [38]
    BARGE S, DEKA B, KASHYAP B, et al. Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade[J]. Phytother Res, 2021, 35(12): 6990-7003. DOI: 10.1002/ptr.7320.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (76) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return