Volume 15 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Chen Yuxiang, Li Zhuocheng, Gao Liang, et al. Latest research and prospect of CD47 in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005
Citation: Chen Yuxiang, Li Zhuocheng, Gao Liang, et al. Latest research and prospect of CD47 in kidney transplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 282-288. doi: 10.3969/j.issn.1674-7445.2024005

Latest research and prospect of CD47 in kidney transplantation

doi: 10.3969/j.issn.1674-7445.2024005
More Information
  • Corresponding author: Jiang Hongtao, Email: jht20032003@163.com
  • Received Date: 2023-12-28
    Available Online: 2024-01-24
  • Publish Date: 2024-03-15
  • CD47 is a transmembrane protein widely expressed on cell surface, which is considered as a key molecule for immune escape. With an increasing number of related studies, the role of CD47 and its ligands in immunomodulatory effects has been gradually understood. Recent studies have investigated the role of CD47 in ischemia-reperfusion injury of allogenetic kidney transplantation, rejection and xenotransplantation. Nevertheless, the specific role and the key mechanism remain elusive. In this article, the structure and function of CD47, common CD47 ligands, the relationship between CD47 and kidney transplantation, and the application of CD47 in kidney transplantation were reviewed, the latest research progress of CD47 in kidney transplantation was summarized, and the limitations of current research and subsequent research direction were analyzed, aiming to provide reference for subsequent application of CD47 in allogeneic and kidney xenotransplantation.

     

  • loading
  • [1]
    LECLAIR P, LIM CJ. CD47 (cluster of differentiation 47): an anti-phagocytic receptor with a multitude of signaling functions[J]. Anim Cells Syst (Seoul), 2020, 24(5): 243-252. DOI: 10.1080/19768354.2020.1818618.
    [2]
    MORDUE KE, HAWLEY BR, SATCHWELL TJ, et al. CD47 surface stability is sensitive to actin disruption prior to inclusion within the band 3 macrocomplex[J]. Sci Rep, 2017, 7(1): 2246. DOI: 10.1038/s41598-017-02356-1.
    [3]
    ERDEM N, CHEN KT, QI M, et al. Thrombospondin-1, CD47, and SIRPα display cell-specific molecular signatures in human islets and pancreata[J]. Am J Physiol Endocrinol Metab, 2023, 324(4): E347-E357. DOI: 10.1152/ajpendo.00221.2022.
    [4]
    MONTERO E, ISENBERG JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era[J]. Cancer Immunol Immunother, 2023, 72(9): 2879-2888. DOI: 10.1007/s00262-023-03465-9.
    [5]
    WANG Q, ONUMA K, LIU C, et al. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis[J]. JCI Insight, 2019, 4(18): e128616. DOI: 10.1172/jci.insight.128616.
    [6]
    FRAZIER WA, GAO AG, DIMITRY J, et al. The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi[J]. J Biol Chem, 1999, 274(13): 8554-8560. DOI: 10.1074/jbc.274.13.8554.
    [7]
    HAYAT SMG, BIANCONI V, PIRRO M, et al. CD47: role in the immune system and application to cancer therapy[J]. Cell Oncol (Dordr), 2020, 43(1): 19-30. DOI: 10.1007/s13402-019-00469-5.
    [8]
    YU J, LI S, CHEN D, et al. Crystal structure of human CD47 in complex with engineered SIRPα. D1(N80A)[J]. Molecules, 2022, 27(17): 5574. DOI: 10.3390/molecules27175574.
    [9]
    XU C, JIN G, WU H, et al. SIRPγ-expressing cancer stem-like cells promote immune escape of lung cancer via Hippo signaling[J]. J Clin Invest, 2022, 132(5): e141797. DOI: 10.1172/JCI141797.
    [10]
    中华医学会血液学分会红细胞疾病(贫血)学组. 中国成人自身免疫性溶血性贫血诊疗指南(2023年版)[J]. 中华血液学杂志, 2023, 44(1): 12-18. DOI: 10.3760/cma.j.issn.0253-2727.2023.01.003.

    Red Blood Cell Disease (Anemia) Group of Branch of Hematology of Chinese Medical Association. Chinese guideline for the diagnosis and treatment of adult autoimmune hemolytic anemia (2023)[J]. Chin J Hematol, 2023, 44(1): 12-18. DOI: 10.3760/cma.j.issn.0253-2727.2023.01.003.
    [11]
    揭晓亮, 孔阳阳, 周光飚. CD47在肿瘤免疫逃逸中的作用及靶向治疗策略研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 455-461. DOI: 10.12182/20230560101.

    JIE XL, KONG YY, ZHOU GB. Latest findings on the role of CD47 in tumor immune evasion and related targeted therapies[J]. J Sichuan Univ (Med Sci), 2023, 54(3): 455-461. DOI: 10.12182/20230560101.
    [12]
    PAN L, WANG B, CHEN M, et al. Lack of SIRP-alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils[J]. Cell Prolif, 2023, 56(2): e13361. DOI: 10.1111/cpr.13361.
    [13]
    陈婧, 黄泽宇, 周学东, 等. CD47分子相关信号通路及CD47在病原感染中的研究进展[J]. 四川大学学报(医学版), 2022, 53(3): 523-527. DOI: 10.12182/20220560501.

    CHEN J, HUANG ZY, ZHOU XD, et al. Research progress of CD47-related signaling pathway and the role of CD47 in pathogenic infection[J]. J Sichuan Univ (Med Sci), 2022, 53(3): 523-527. DOI: 10.12182/20220560501.
    [14]
    ROBERTS DD. Thrombospondins: from structure to therapeutics[J]. Cell Mol Life Sci, 2008, 65(5): 669-671. DOI: 10.1007/s00018-007-7483-2.
    [15]
    OLDENBORG PA. CD47: a cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease[J]. ISRN Hematol, 2013: 614619. DOI: 10.1155/2013/614619.
    [16]
    CHUNG EYM, TRINH K, LI J, et al. Biomarkers in cardiorenal syndrome and potential insights into novel therapeutics[J]. Front Cardiovasc Med, 2022, 9: 868658. DOI: 10.3389/fcvm.2022.868658.
    [17]
    SINGLA B, AITHBATHULA RV, PERVAIZ N, et al. CD47 activation by thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2023, 43(7): 1234-1250. DOI: 10.1161/ATVBAHA.122.318904.
    [18]
    ISENBERG JS, ROBERTS DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury[J]. Pediatr Nephrol, 2019, 34(12): 2479-2494. DOI: 10.1007/s00467-018-4123-z.
    [19]
    JULOVI SM, SANGANERIA B, MINHAS N, et al. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis[J]. Lab Invest, 2020, 100(9): 1184-1196. DOI: 10.1038/s41374-020-0434-3.
    [20]
    WANG X, XU M, JIA J, et al. CD47 blockade reduces ischemia/reperfusion injury in donation after cardiac death rat kidney transplantation[J]. Am J Transplant, 2018, 18(4): 843-854. DOI: 10.1111/ajt.14523.
    [21]
    WANG Z, GUO H, XU R, et al. The effects of cell surface CD47 downregulation on ischaemia-reperfusion injury during pig liver transplantation[J]. Int J Exp Pathol, 2021, 102(3): 140-147. DOI: 10.1111/iep.12391.
    [22]
    SHI L, SONG Z, LI C, et al. HDAC6 inhibition alleviates ischemia- and cisplatin-induced acute kidney injury by promoting autophagy[J]. Cells, 2022, 11(24): 3951. DOI: 10.3390/cells11243951.
    [23]
    EL-RASHID M, GHIMIRE K, SANGANERIA B, et al. CD47 limits autophagy to promote acute kidney injury[J]. FASEB J, 2019, 33(11): 12735-12749. DOI: 10.1096/fj.201900120RR.
    [24]
    GARCIA-AROZ S, XU M, AHMED O, et al. Improving liver graft function using CD47 blockade in the setting of normothermic machine perfusion[J]. Transplantation, 2022, 106(1): 37-47. DOI: 10.1097/TP.0000000000003688.
    [25]
    ŠVACHOVÁ V, KRUPIČKOVÁ L, NOVOTNÝ M, et al. Changes in phenotypic patterns of blood monocytes after kidney transplantation and during acute rejection[J]. Physiol Res, 2021, 70(5): 709-721. DOI: 10.33549/physiolres.934700.
    [26]
    CHEN M, WANG Y, WANG H, et al. Elimination of donor CD47 protects against vascularized allograft rejection in mice[J]. Xenotransplantation, 2019, 26(2): e12459. DOI: 10.1111/xen.12459.
    [27]
    PENGAM S, DURAND J, USAL C, et al. SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells[J]. Am J Transplant, 2019, 19(12): 3263-3275. DOI: 10.1111/ajt.15497.
    [28]
    VAN DUIJN A, VAN DER BURG SH, SCHEEREN FA. CD47/SIRPα axis: bridging innate and adaptive immunity[J]. J Immunother Cancer, 2022, 10(7): e004589. DOI: 10.1136/jitc-2022-004589.
    [29]
    QU T, ZHONG T, PANG X, et al. Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity[J]. J Immunother Cancer, 2022, 10(11): e005517. DOI: 10.1136/jitc-2022-005517.
    [30]
    YUAN Z, YE L, FENG X, et al. YAP-dependent induction of CD47-enriched extracellular vesicles inhibits dendritic cell activation and ameliorates hepatic ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021: 6617345. DOI: 10.1155/2021/6617345.
    [31]
    NATH PR, GANGAPLARA A, PAL-NATH D, et al. CD47 expression in natural killer cells regulates homeostasis and modulates immune response to lymphocytic choriomeningitis virus[J]. Front Immunol, 2018, 9: 2985. DOI: 10.3389/fimmu.2018.02985.
    [32]
    DEUSE T, HU X, AGBOR-ENOH S, et al. The SIRPα-CD47 immune checkpoint in NK cells[J]. J Exp Med, 2021, 218(3): e20200839. DOI: 10.1084/jem.20200839.
    [33]
    WANG S, WU Q, CHEN T, et al. Blocking CD47 promotes antitumour immunity through CD103+ dendritic cell-NK cell axis in murine hepatocellular carcinoma model[J]. J Hepatol, 2022, 77(2): 467-478. DOI: 10.1016/j.jhep.2022.03.011.
    [34]
    HU X, WHITE K, OLROYD AG, et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques[J]. Nat Biotechnol, 2023,DOI: 10.1038/s41587-023-01784-x[Epub ahead of print
    [35]
    KIM JI, PARK JS, KWAK J, et al. CRISPR/Cas9-mediated knockout of CD47 causes hemolytic anemia with splenomegaly in C57BL/6 mice[J]. Lab Anim Res, 2018, 34(4): 302-310. DOI: 10.5625/lar.2018.34.4.302.
    [36]
    DEHMANI S, NERRIÈRE-DAGUIN V, NÉEL M, et al. SIRPγ-CD47 interaction positively regulates the activation of human T cells in situation of chronic stimulation[J]. Front Immunol, 2021, 12: 732530. DOI: 10.3389/fimmu.2021.732530.
    [37]
    HU Y, ZHOU H, GAO B, et al. Role of regulatory T cells in CD47/donor-specific transfusion-induced immune tolerance in skin-heart transplantation mice[J]. Transpl Infect Dis, 2019, 21(1): e13012. DOI: 10.1111/tid.13012.
    [38]
    GHEIBIHAYAT SM, CABEZAS R, NIKIFOROV NG, et al. CD47 in the brain and neurodegeneration: an update on the role in neuroinflammatory pathways[J]. Molecules, 2021, 26(13): 3943. DOI: 10.3390/molecules26133943.
    [39]
    UPTON R, BANUELOS A, FENG D, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance[J]. Proc Natl Acad Sci U S A, 2021, 118(29): e2026849118. DOI: 10.1073/pnas.2026849118.
    [40]
    EVERS M, RÖSNER T, DÜNKEL A, et al. The selection of variable regions affects effector mechanisms of IgA antibodies against CD20[J]. Blood Adv, 2021, 5(19): 3807-3820. DOI: 10.1182/bloodadvances.2021004598.
    [41]
    MAEDA A, KOGATA S, TOYAMA C, et al. The innate cellular immune response in xenotransplantation[J]. Front Immunol, 2022, 13: 858604. DOI: 10.3389/fimmu.2022.858604.
    [42]
    NOMURA S, ARIYOSHI Y, WATANABE H, et al. Transgenic expression of human CD47 reduces phagocytosis of porcine endothelial cells and podocytes by baboon and human macrophages[J]. Xenotransplantation, 2020, 27(1): e12549. DOI: 10.1111/xen.12549.
    [43]
    SINGIREDDY S, TULLY A, GALINDO J, et al. Genetic engineering of donor pig for the first human cardiac xenotransplantation: combatting rejection, coagulopathy, inflammation, and excessive growth[J]. Curr Cardiol Rep, 2023, 25(11): 1649-1656. DOI: 10.1007/s11886-023-01978-4.
    [44]
    LI T, LV Y, SUN R, et al. Incompatibility between recipient CD47 and donor SIRPα is not a key risk factor for thrombocytopenia or anemia following rat liver xenotransplantation in mice[J]. Xenotransplantation, 2021, 28(3): e12657. DOI: 10.1111/xen.12657.
    [45]
    BOUWSTRA R, VAN MEERTEN T, BREMER E. CD47-SIRPα blocking-based immunotherapy: current and prospective therapeutic strategies[J]. Clin Transl Med, 2022, 12(8): e943. DOI: 10.1002/ctm2.943.
    [46]
    罗登科. 成人肾移植术后糖尿病的危险因素单中心分析[D]. 海口: 海南医学院, 2022.
    [47]
    ROBERTS DD, ISENBERG JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes[J]. Am J Physiol Cell Physiol, 2021, 321(2): C201-C213. DOI: 10.1152/ajpcell.00175.2021.
    [48]
    ZHAO W, SHEN B, CHENG Q, et al. Roles of TSP1-CD47 signaling pathway in senescence of endothelial cells: cell cycle, inflammation and metabolism[J]. Mol Biol Rep, 2023, 50(5): 4579-4585. DOI: 10.1007/s11033-023-08357-w.
    [49]
    SHI H, WANG X, LI F, et al. CD47-SIRPα axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis[J]. Sci Transl Med, 2022, 14(672): eabp8309. DOI: 10.1126/scitranslmed.abp8309.
    [50]
    KUEHN BM. First pig-to-human heart transplant marks a milestone in xenotransplantation[J]. Circulation, 2022, 145(25): 1870-1871. DOI: 10.1161/CIRCULATIO NAHA.122.060418.
    [51]
    SHRESTHA P, BATRA L, TARIQ MALIK M, et al. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation[J]. Am J Transplant, 2020, 20(10): 2703-2714. DOI: 10.1111/ajt.15958.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (157) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return