Volume 15 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
Zhu Shufang, Mou Lisha. Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194
Citation: Zhu Shufang, Mou Lisha. Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2024, 15(2): 214-219. doi: 10.3969/j.issn.1674-7445.2023194

Application progress of mesenchymal stem cells in islet transplantation for type 1 diabetes mellitus

doi: 10.3969/j.issn.1674-7445.2023194
More Information
  • Corresponding author: Mou Lisha, Email: lishamou@gmail.com
  • Received Date: 2023-10-03
    Available Online: 2023-12-26
  • Publish Date: 2024-03-15
  • Islet transplantation is considered as one of the most effective approach for type 1 diabetes mellitus, although its efficacy is limited by several factors. Anoxia, stress and rejection occurring during the isolation, culturing and transplantation of islets may have impact on the outcome of the islet transplantation. Due to the biological properties such as anti-inflammation, angiogenetic promotion and immune regulation, mesenchymal stem cells (MSCs) are all the way focused by researchers. Additionally, exosome, a derivative of MSC, also plays an import role in regulating anoxia-induced oxidative stress modulation, angiogenetic promotion, and immune regulation. MSC-based islet transplantation may be a useful therapeutic tool in treating type 1 diabetes. Therefore, in this review, the potential effect of MSC prior and posterior to the operation of the islet transplantation, its clinical application as well as its limitations were reviewed, aiming to offer insights into the future application of islet transplantation in treating type 1 diabetes.

     

  • loading
  • [1]
    SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
    [2]
    SYED FZ. Type 1 diabetes mellitus[J]. Ann Intern Med, 2022, 175(3): ITC33-ITC48. DOI: 10.7326/AITC202203150.
    [3]
    MARKMANN JF, RICKELS MR, EGGERMAN TL, et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes[J]. Am J Transplant, 2021, 21(4): 1477-1492. DOI: 10.1111/ajt.16174.
    [4]
    罗说明, 周智广. 1型糖尿病治疗新技术的现状与未来[J]. 中国医师杂志, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.

    LUO SM, ZHOU ZG. Current status and future of new technologies in the treatment of type 1 diabetes[J]. J Chin Physician, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.
    [5]
    MARFIL-GARZA BA, SHAPIRO AMJ, KIN T. Clinical islet transplantation: current progress and new frontiers[J]. J Hepatobiliary Pancreat Sci, 2021, 28(3): 243-254. DOI: 10.1002/jhbp.891.
    [6]
    SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential[J]. Trends Pharmacol Sci, 2020, 41(9): 653-664. DOI: 10.1016/j.tips.2020.06.009.
    [7]
    张岐剑, 徐希明. 外胚层间充质干细胞的获取及应用[J]. 中国组织工程研究, 2023, 27(6): 928-934. DOI: 10.12307/j.issn.2095-4344.2023.6.xdkf202306020.

    ZHANG QJ, XU XM. Acquisition and application of ectodermal mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2023, 27(6): 928-934. DOI: 10.12307/j.issn.2095-4344.2023.6.xdkf202306020.
    [8]
    LIN AD, TUNG MC, LU CH. The hernia sac-a suitable source for obtaining mesenchymal stem cells[J]. Surg Open Sci, 2021, 6: 40-44. DOI: 10.1016/j.sopen.2021.08.002.
    [9]
    SHRESTHA M, NGUYEN TT, PARK J, et al. Immunomodulation effect of mesenchymal stem cells in islet transplantation[J]. Biomed Pharmacother, 2021, 142: 112042. DOI: 10.1016/j.biopha.2021.112042.
    [10]
    MATSUZAKA Y, YASHIRO R. Therapeutic strategy of mesenchymal-stem-cell-derived extracellular vesicles as regenerative medicine[J]. Int J Mol Sci, 2022, 23(12): 6480. DOI: 10.3390/ijms23126480.
    [11]
    THALAKIRIYAWA DS, JAYASOORIYA PR, DISSANAYAKA WL. Regenerative potential of mesenchymal stem cell-derived extracellular vesicles[J]. Curr Mol Med, 2022, 22(2): 98-119. DOI: 10.2174/1566524021666210211114453.
    [12]
    LACHAUD CC, COBO-VUILLEUMIER N, FUENTE-MARTIN E, et al. Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses[J]. Front Cell Dev Biol, 2023, 11: 1089817. DOI: 10.3389/fcell.2023.1089817.
    [13]
    YOUSEF HN, SAKR SM, SABRY SA. Mesenchymal stem cells ameliorate hyperglycemia in type I diabetic developing male rats[J]. Stem Cells Int, 2022: 7556278. DOI: 10.1155/2022/7556278.
    [14]
    EL-SAWAH SG, RASHWAN HM, ALTHOBAITI F, et al. AD-MSCs and BM-MSCs ameliorating effects on the metabolic and hepato-renal abnormalities in type 1 diabetic rats[J]. Saudi J Biol Sci, 2022, 29(2): 1053-1060. DOI: 10.1016/j.sjbs.2021.09.067.
    [15]
    HUBBER EL, RACKHAM CL, JONES PM. Protecting islet functional viability using mesenchymal stromal cells[J]. Stem Cells Transl Med, 2021, 10(5): 674-680. DOI: 10.1002/sctm.20-0466.
    [16]
    RACKHAM CL, HUBBER EL, CZAJKA A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem Cells, 2020, 38(4): 574-584. DOI: 10.1002/stem.3134.
    [17]
    LI X, LANG H, LI B, et al. Change in viability and function of pancreatic islets after coculture with mesenchymal stromal cells: a systemic review and meta-analysis[J]. J Diabetes Res, 2020:5860417. DOI: 10.1155/2020/5860417.
    [18]
    BRANDHORST H, BRANDHORST D, ABRAHAM A, et al. Proteomic profiling reveals the ambivalent character of the mesenchymal stem cell secretome: assessing the effect of preconditioned media on isolated human islets[J]. Cell Transplant, 2020, 29: 963689720952332. DOI: 10.1177/0963689720952332.
    [19]
    KUPPAN P, SEEBERGER K, KELLY S, et al. Co-transplantation of human adipose-derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function[J]. Xenotransplantation, 2020, 27(4): e12581. DOI: 10.1111/xen.12581.
    [20]
    LI SW, CAI Y, MAO XL, et al. The immunomodulatory properties of mesenchymal stem cells play a critical role in inducing immune tolerance after liver transplantation[J]. Stem Cells Int, 2021: 6930263. DOI: 10.1155/2021/6930263.
    [21]
    CORRADI-PERINI C, SANTOS TM, CAMARA NOS, et al. Co-transplantation of xenogeneic bone marrow-derived mesenchymal stem cells alleviates rejection of pancreatic islets in non-obese diabetic mice[J]. Transplant Proc, 2017, 49(4): 902-905. DOI: 10.1016/j.transproceed.2017.01.064.
    [22]
    CHEN J, CHEN J, CHENG Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1): 97. DOI: 10.1186/s13287-020-01610-0.
    [23]
    TAN Y, NIE W, CHEN C, et al. Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets[J]. Exp Biol Med (Maywood), 2019, 244(9): 781-788. DOI: 10.1177/1535370219844472.
    [24]
    XU Y, TAN M, MA X, et al. Human mesenchymal stem cells-derived conditioned medium inhibits hypoxia-induced death of neonatal porcine islets by inducing autophagy[J]. Xenotransplantation, 2020, 27(1): e12556. DOI: 10.1111/xen.12556.
    [25]
    YU S, LU J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants[J]. Transpl Immunol, 2023, 81: 101939. DOI: 10.1016/j.trim.2023.101939.
    [26]
    YAN LL, YE LP, CHEN YH, et al. The influence of microenvironment on survival of intraportal transplanted islets[J]. Front Immunol, 2022, 13: 849580. DOI: 10.3389/fimmu.2022.849580.
    [27]
    CAO XK, LI R, SUN W, et al. Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis[J]. Biomed Pharmacother, 2016, 78: 156-164. DOI: 10.1016/j.biopha.2016.01.007.
    [28]
    LING Q, SHEN L, ZHANG W, et al. Increased plasmablasts enhance T cell-mediated beta cell destruction and promote the development of type 1 diabetes[J]. Mol Med, 2022, 28(1): 18. DOI: 10.1186/s10020-022-00447-y.
    [29]
    CONTRERAS-KALLENS P, TERRAZA C, OYARCE K, et al. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance[J]. Ann N Y Acad Sci, 2018, 1417(1): 35-56. DOI: 10.1111/nyas.13364.
    [30]
    ZHANG W, LING Q, WANG B, et al. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes[J]. Stem Cell Res Ther, 2022, 13(1): 406. DOI: 10.1186/s13287-022-02974-1.
    [31]
    PIEKARSKA K, URBAN-WÓJCIUK Z, KURKOWIAK M, et al. Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity[J]. Nat Commun, 2022, 13(1): 856. DOI: 10.1038/s41467-022-28338-0.
    [32]
    LI XY, WU SY, LEUNG PS. Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters[J]. Int J Mol Sci, 2019, 20(17): 4083. DOI: 10.3390/ijms20174083.
    [33]
    REN G, REZAEE M, RAZAVI M, et al. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties[J]. Cell Tissue Res, 2019, 376(3): 353-364. DOI: 10.1007/s00441-019-02997-w.
    [34]
    BARONE L, PALANO MT, GALLAZZI M, et al. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis[J]. Cell Death Discov, 2023, 9(1): 174. DOI: 10.1038/s41420-023-01464-4.
    [35]
    DUMAN BO, SARIBOYACI AE, KARAOZ E. Bio-engineering of 3-D cell sheets for diabetic rats: Interaction between mesenchymal stem cells and beta cells in functional islet regeneration system[J]. Tissue Cell, 2022, 79: 101919. DOI: 10.1016/j.tice.2022.101919.
    [36]
    LUO Y, LIANG F, WAN X, et al. Hyaluronic acid facilitates angiogenesis of endothelial colony forming cell combining with mesenchymal stem cell via CD44/ microRNA-139-5p pathway[J]. Front Bioeng Biotechnol, 2022, 10: 794037. DOI: 10.3389/fbioe.2022.794037.
    [37]
    ELSHEMY MM, ASEM M, ALLEMAILEM KS, et al. Antioxidative capacity of liver- and adipose-derived mesenchymal stem cell-conditioned media and their applicability in treatment of type 2 diabetic rats[J]. Oxid Med Cell Longev, 2021: 8833467. DOI: 10.1155/2021/8833467.
    [38]
    WANG Y, TIAN M, WANG F, et al. Understanding the immunological mechanisms of mesenchymal stem cells in allogeneic transplantation: from the aspect of major histocompatibility complex class I[J]. Stem Cells Dev, 2019, 28(17): 1141-1150. DOI: 10.1089/scd.2018.0256.
    [39]
    BOWLES AC, ISHAHAK MM, GLOVER SJ, et al. Evaluating vascularization of heterotopic islet constructs for type 1 diabetes using an in vitro platform[J]. Integr Biol (Camb), 2019, 11(8): 331-341. DOI: 10.1093/intbio/zyz027.
    [40]
    KHATRI R, MAZUREK S, PETRY SF, et al. Mesenchymal stem cells promote pancreatic β-cell regeneration through downregulation of FoxO1 pathway[J]. Stem Cell Res Ther, 2020, 11(1): 497. DOI: 10.1186/s13287-020-02007-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (168) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return