Volume 15 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Liu Qi, Zhang Yannan, Sun Qiquan. Research progress on association between macrophages and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161
Citation: Liu Qi, Zhang Yannan, Sun Qiquan. Research progress on association between macrophages and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161

Research progress on association between macrophages and ischemia-reperfusion injury

doi: 10.3969/j.issn.1674-7445.2023161
More Information
  • Corresponding author: Sun Qiquan, Email: sunqiquan@gdph.org.cn
  • Received Date: 2023-08-16
    Available Online: 2023-11-29
  • Publish Date: 2024-01-11
  • Ischemia-reperfusion injury (IRI) is an extremely complicated pathophysiological process, which may occur during the process of myocardial infarction, stroke, organ transplantation and temporary interruption of blood flow during surgery, etc. As key molecules of immune system, macrophages play a vital role in the pathogenesis of IRI. M1 macrophages are pro-inflammatory cells and participate in the elimination of pathogens. M2 macrophages exert anti-inflammatory effect and participate in tissue repair and remodeling and extracellular matrix remodeling. The balance between macrophage phenotypes is of significance for the outcome and treatment of IRI. This article reviewed the role of macrophages in IRI, including the balance between M1/M2 macrophage phenotype, the mechanism of infiltration and recruitment into different ischemic tissues. In addition, the potential therapeutic strategies of targeting macrophages during IRI were also discussed, aiming to provide reference for alleviating IRI and promoting tissue repair.

     

  • loading
  • [1]
    ELTZSCHIG HK, ECKLE T. Ischemia and reperfusion--from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. DOI: 10.1038/nm.2507.
    [2]
    PRZYKAZA Ł. Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade[J]. Front Immunol, 2021, 12: 782569. DOI: 10.3389/fimmu.2021.782569.
    [3]
    HAUSENLOY DJ, YELLON DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1): 92-100. DOI: 10.1172/JCI62874.
    [4]
    JIMÉNEZ-CASTRO MB, CORNIDE-PETRONIO ME, GRACIA-SANCHO J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131. DOI: 10.3390/cells8101131.
    [5]
    MANTOVANI A, SICA A, LOCATI M. Macrophage polarization comes of age[J]. Immunity, 2005, 23(4): 344-346. DOI: 10.1016/j.immuni.2005.10.001.
    [6]
    LAZAROV T, JUAREZ-CARREÑO S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
    [7]
    GESKE FJ, MONKS J, LEHMAN L, et al. The role of the macrophage in apoptosis: hunter, gatherer, and regulator[J]. Int J Hematol, 2002, 76(1): 16-26. DOI: 10.1007/BF02982714.
    [8]
    VAROL C, MILDNER A, JUNG S. Macrophages: development and tissue specialization[J]. Annu Rev Immunol, 2015, 33: 643-675. DOI: 10.1146/annurev-immunol-032414-112220.
    [9]
    MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448.
    [10]
    陈玮钰, 覃小宾, 乐滢玉, 等. 巨噬细胞极化在非肿瘤性肝脏疾病中的作用机制及其靶向治疗[J]. 临床肝胆病杂志, 2022, 38(11): 2649-2653. DOI: 10.3969/j.issn.1001-5256.2022.11.042.

    CHEN WY, QIN XB, LE YY, et al. Mechanism of action of macrophage polarization in non-neoplastic liver diseases and related targeted therapies[J]. J Clin Hepatol, 2022, 38(11): 2649-2653. DOI: 10.3969/j.issn.1001-5256.2022.11.042.
    [11]
    WANG H, XI Z, DENG L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113. DOI: 10.7150/ijms.52691.
    [12]
    SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
    [13]
    ZHANG H, LI Z, LI W. M2 macrophages serve as critical executor of innate immunity in chronic allograft rejection[J]. Front Immunol, 2021, 12: 648539. DOI: 10.3389/fimmu.2021.648539.
    [14]
    王静,高煜茹,蔡钱伟, 等. 瑞马唑仑通过调节肺泡巨噬细胞极化减轻脂多糖诱导的急性肺损伤[J]. 实用医学杂志, 2023, 39(9): 1092-1097. DOI: 10.3969/j.issn.1006-5725.2023.09.005.

    WANG J, GAO YR, CAI QW, et al. Remimazolam alleviates LPS-induced acute lung injury by regulating macrophage polarization[J]. J Pract Med, 2023, 39(9): 1092-1097. DOI: 10.3969/j.issn.1006-5725.2023.09.005.
    [15]
    PENG Q, NOWOCIN A, RATNASOTHY K, et al. Inhibition of thrombin on endothelium enhances recruitment of regulatory T cells during IRI and when combined with adoptive Treg transfer, significantly protects against acute tissue injury and prolongs allograft survival[J]. Front Immunol, 2023, 13: 980462. DOI: 10.3389/fimmu.2022.980462.
    [16]
    HU Z, ZHAN J, PEI G, et al. Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition[J]. Ren Fail, 2023, 45(1): 2149412. DOI: 10.1080/0886022X.2022.2149412.
    [17]
    LAN T, BI F, XU Y, et al. PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress[J]. Int J Oral Sci, 2023, 15(1): 10. DOI: 10.1038/s41368-023-00217-4.
    [18]
    WANG S, CAI Y, BU R, et al. PPARγ regulates macrophage polarization by inhibiting the JAK/STAT pathway and attenuates myocardial ischemia/reperfusion injury in vivo[J]. Cell Biochem Biophys, 2023, 81(2): 349-358. DOI: 10.1007/s12013-023-01137-0.
    [19]
    POPOV SV, MUKHOMEDZYANOV AV, VORONKOV NS, et al. Regulation of autophagy of the heart in ischemia and reperfusion[J]. Apoptosis, 2023, 28(1/2): 55-80. DOI: 10.1007/s10495-022-01786-1.
    [20]
    SHAO X, XU P, JI L, et al. Low-dose decitabine promotes M2 macrophage polarization in patients with primary immune thrombocytopenia via enhancing KLF4 binding to PPARγ promoter[J]. Clin Transl Med, 2023, 13(7): e1344. DOI: 10.1002/ctm2.1344.
    [21]
    SUN K, LI YY, JIN J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair[J]. Signal Transduct Target Ther, 2021, 6(1): 79. DOI: 10.1038/s41392-020-00455-6.
    [22]
    WU X, SINGLA S, LIU JJ, et al. The role of macrophage ion channels in the progression of atherosclerosis[J]. Front Immunol, 2023, 14: 1225178. DOI: 10.3389/fimmu.2023.1225178.
    [23]
    PENG Y, ZHOU M, YANG H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023: 8821610. DOI: 10.1155/2023/8821610.
    [24]
    董星辰, 孙晓阳. 趋化因子及其受体在胶质瘤诊断及治疗中的研究进展[J]. 医学综述, 2022, 28(12): 2403-2407. DOI: 10.3969/j.issn.1006-2084.2022.12.020.

    DONG XC, SUN XY. Research progress of chemokines and their receptors in diagnosis and treatment of glioma[J]. Med Recap, 2022, 28(12): 2403-2407. DOI: 10.3969/j.issn.1006-2084.2022.12.020.
    [25]
    ZHUANG L, ZONG X, YANG Q, et al. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization[J]. EBioMedicine, 2023, 95: 104744. DOI: 10.1016/j.ebiom.2023.104744.
    [26]
    WANG J, LIU X, GU Y, et al. DNA binding protein YB-1 is a part of the neutrophil extracellular trap mediation of kidney damage and cross-organ effects[J]. Kidney Int, 2023, 104(1): 124-138. DOI: 10.1016/j.kint.2023.02.032.
    [27]
    TANG W, PANJA S, JOGDEO CM, et al. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury[J]. Biomaterials, 2022, 285: 121562. DOI: 10.1016/j.biomaterials.2022.121562.
    [28]
    WEI X, WEN Y, HU Y, et al. Total saponins of Panax notoginseng modulate the astrocyte inflammatory signaling pathway and attenuate inflammatory injury induced by oxygen-glucose deprivation/reperfusion injury in rat brain microvascular endothelial cells[J]. Curr Stem Cell Res Ther, 2024, 19(2): 267-276. DOI: 10.2174/1574888X18666230509113912.
    [29]
    YOO KD, CHA RH, LEE S, et al. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury[J]. J Cell Mol Med, 2020, 24(10): 5515-5527. DOI: 10.1111/jcmm.15207.
    [30]
    CANTERO-NAVARRO E, RAYEGO-MATEOS S, OREJUDO M, et al. Role of macrophages and related cytokines in kidney disease[J]. Front Med (Lausanne), 2021, 8: 688060. DOI: 10.3389/fmed.2021.688060.
    [31]
    ZHANG H, LIU Y, CAO X, et al. Nrf2 promotes inflammation in early myocardial ischemia-reperfusion via recruitment and activation of macrophages[J]. Front Immunol, 2021, 12: 763760. DOI: 10.3389/fimmu.2021.763760.
    [32]
    LI J. Alterations in cell adhesion proteins and cardiomyopathy[J]. World J Cardiol, 2014, 6(5): 304-313. DOI: 10.4330/wjc.v6.i5.304.
    [33]
    MARCHINI T, MITRE LS, WOLF D. Inflammatory cell recruitment in cardiovascular disease[J]. Front Cell Dev Biol, 2021, 9: 635527. DOI: 10.3389/fcell.2021.635527.
    [34]
    ROUSHANSARAI NS, PASCHER A, BECKER F. Innate immune cells during machine perfusion of liver grafts-the janus face of hepatic macrophages[J]. J Clin Med, 2022, 11(22): 6669. DOI: 10.3390/jcm11226669.
    [35]
    LU TF, YANG TH, ZHONG CP, et al. Dual effect of hepatic macrophages on liver ischemia and reperfusion injury during liver transplantation[J]. Immune Netw, 2018, 18(3): e24. DOI: 10.4110/in.2018.18.e24.
    [36]
    WANG M, PAN W, XU Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094. DOI: 10.2147/JIR.S350109.
    [37]
    SUN XR, YAO ZM, CHEN L, et al. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion[J]. Fundam Clin Pharmacol, 2023, 37(6): 1065-1078. DOI: 10.1111/fcp.12928.
    [38]
    LIU H, LI Y, XIONG J. The role of hypoxia-inducible factor-1 alpha in renal disease[J]. Molecules, 2022, 27(21): 7318. DOI: 10.3390/molecules27217318.
    [39]
    ZHENG J, CHEN P, ZHONG J, et al. HIF-1α in myocardial ischemia-reperfusion injury (review)[J]. Mol Med Rep, 2021, 23(5): 352. DOI: 10.3892/mmr.2021.11991.
    [40]
    LIANG Y, QU L, LIU Z, et al. The IRE1/JNK signaling pathway regulates inflammation cytokines and production of glomerular extracellular matrix in the acute kidney injury to chronic kidney disease transition[J]. Mol Biol Rep, 2022, 49(8): 7709-7718. DOI: 10.1007/s11033-022-07588-7.
    [41]
    FLORES-VERGARA R, OLMEDO I, ARÁNGUIZ P, et al. Communication between cardiomyocytes and fibroblasts during cardiac ischemia/reperfusion and remodeling: roles of TGF-β, CTGF, the renin angiotensin axis, and non-coding RNA molecules[J]. Front Physiol, 2021, 12: 716721. DOI: 10.3389/fphys.2021.716721.
    [42]
    ELWANY NE, ABDELHAMID AM, MOHAMED NM, et al. Vinpocetine alleviates intestinal ischemia/reperfusion injury and enhances M2 macrophage polarization in rats: role of SIRT1/SOCS3/STAT3 signaling pathway[J]. Int Immunopharmacol, 2023, 122: 110654. DOI: 10.1016/j.intimp.2023.110654.
    [43]
    XU Z, WANG X, KUANG W, et al. Kaempferol improves acute kidney injury via inhibition of macrophage infiltration in septic mice[J]. Biosci Rep, 2023, 43(7): BSR20230873. DOI: 10.1042/BSR20230873.
    [44]
    ZHANG J, LIU L, DONG Z, et al. An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury[J]. Bioact Mater, 2023, 28: 480-494. DOI: 10.1016/j.bioactmat.2023.05.017.
    [45]
    CHANG FC, LIU CH, LUO AJ, et al. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells[J]. Kidney Int, 2022, 102(4): 780-797. DOI: 10.1016/j.kint.2022.06.026.
    [46]
    CHEN S, LI A, WU J, et al. Dexmedetomidine reduces myocardial ischemia-reperfusion injury in young mice through MIF/AMPK/GLUT4 axis[J]. BMC Anesthesiol, 2022, 22(1): 289. DOI: 10.1186/s12871-022-01825-z.
    [47]
    LUQUE-CAMPOS N, BUSTAMANTE-BARRIENTOS FA, PRADENAS C, et al. The macrophage response is driven by mesenchymal stem cell-mediated metabolic reprogramming[J]. Front Immunol, 2021, 12: 624746. DOI: 10.3389/fimmu.2021.624746.
    [48]
    ZHAO J, LI X, HU J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216. DOI: 10.1093/cvr/cvz040.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (390) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return