Volume 14 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Xia Zheng, Zhou Lin. Application progress in the role of vitamin D3 in transplantation immunity[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020
Citation: Xia Zheng, Zhou Lin. Application progress in the role of vitamin D3 in transplantation immunity[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020

Application progress in the role of vitamin D3 in transplantation immunity

doi: 10.3969/j.issn.1674-7445.2023.02.020
More Information
  • Corresponding author: Zhou Lin, E-mail: commander_fmmu@126.com
  • Received Date: 2022-09-27
    Available Online: 2023-03-15
  • Publish Date: 2023-03-15
  • Vitamin D3 is a kind of vitamin that plays important roles in maintaining the normal physiological function of the human body, and its metabolites and analogues exhibit strong anti-inflammatory activity. Vitamin D3 could be activated and converted into 1α, 25-dihydroxyvitamin D3, a kind of steroid hormone, in the human body, which participates in the regulation of cellular metabolism by activating vitamin D receptor (a kind of transcription factor), thus exerting immunomodulatory effects. This is essential for maintaining the physiological health of the body. Currently, there is a growing number of studies that suggest important roles for 1α, 25-dihydroxyvitamin D3 in organ transplantation immunomodulation and tolerance. Therefore, we reviewed the overview and physiological effects of 1α, 25-dihydroxyvitamin D3, the immunomodulatory effects of vitamin D3 and the application of vitamin D3 in clinical organ transplantation, and summarized the value of applying vitamin D3 in inducing immune tolerance in transplantation, with the aim of providing a reference for promoting the application of vitamin D3 in transplantation immunity.

     

  • loading
  • [1]
    EL-SHARKAWY A, MALKI A. Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications[J]. Molecules, 2020, 25(14): 3219. DOI: 10.3390/molecules25143219.
    [2]
    罗玲, 廖献花, 钟碧慧. 维生素D缺乏与代谢相关脂肪性肝病的关系[J]. 临床肝胆病杂志, 2022, 38(7): 1641-1645. DOI: 10.3969/j.issn.1001-5256.2022.07.034.

    LUO L, LIAO XH, ZHONG BH. Research advances in vitamin D deficiency and metabolic associated fatty liver disease[J]. J Clin Hepatol, 2022, 38(7): 1641-1645. DOI: 10.3969/j.issn.1001-5256.2022.07.034.
    [3]
    BILANI N, ELSON L, SZUCHAN C, et al. Newly-identified pathways relating vitamin D to carcinogenesis: a review[J]. In Vivo, 2021, 35(3): 1345-1354. DOI: 10.21873/invivo.12387.
    [4]
    AL-GHAFARI AB, BALAMASH KS, AL DOGHAITHER HA. Serum vitamin D receptor (VDR) levels as a potential diagnostic marker for colorectal cancer[J]. Saudi J Biol Sci, 2020, 27(3): 827-832. DOI: 10.1016/j.sjbs.2020.01.006.
    [5]
    潘丽莎, 华美云, 徐思雅, 等. 维生素D对急性肝衰竭小鼠肝脏的保护作用[J]. 中华肝脏病杂志, 2021, 29(6): 545-550. DOI: 10.3760/cma.j.cn501113-20200701-00360.

    PAN LS, HUA MY, XU SY, et al. Protective effect of vitamin D in mice with acute liver failure[J]. Chin J Hepatol, 2021, 29(6): 545-550. DOI: 10.3760/cma.j.cn501113-20200701-00360.
    [6]
    MAESTRO MA, MOLNÁR F, CARLBERG C. Vitamin D and its synthetic analogs[J]. J Med Chem, 2019, 62(15): 6854-6875. DOI: 10.1021/acs.jmedchem.9b00208.
    [7]
    RIZZOLI R. Vitamin D supplementation: upper limit for safety revisited?[J]. Aging Clin Exp Res, 2021, 33(1): 19-24. DOI: 10.1007/s40520-020-01678-x.
    [8]
    SAPONARO F, SABA A, ZUCCHI R. An update on vitamin D metabolism[J]. Int J Mol Sci, 2020, 21(18): 6573. DOI: 10.3390/ijms21186573.
    [9]
    BELORUSOVA AY, ROCHEL N. Structural studies of vitamin D nuclear receptor ligand-binding properties[J]. Vitam Horm, 2016, 100: 83-116. DOI: 10.1016/bs.vh.2015.10.003.
    [10]
    NAGATA A, AKAGI Y, ASANO L, et al. Synthetic chemical probes that dissect vitamin D activities[J]. ACS Chem Biol, 2019, 14(12): 2851-2858. DOI: 10.1021/acschembio.9b00718.
    [11]
    ŠVAJGER U, ROŽMAN PJ. Synergistic effects of interferon-γ and vitamin D3 signaling in induction of ILT-3highPDL-1high tolerogenic dendritic cells[J]. Front Immunol, 2019, 10: 2627. DOI: 10.3389/fimmu.2019.02627.
    [12]
    CATALÀ-MOLL F, FERRETÉ-BONASTRE AG, GODOY-TENA G, et al. Vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis[J]. Cell Rep, 2022, 38(3): 110244. DOI: 10.1016/j.celrep.2021.110244.
    [13]
    ZHOU L, LI H, ZHANG XX, et al. Rapamycin treated tol-dendritic cells derived from BM-MSCs reversed graft rejection in a rat liver transplantation model by inducing CD8+CD45RC-Treg[J]. Mol Immunol, 2021, 137: 11-19. DOI: 10.1016/j.molimm.2021.03.018.
    [14]
    CHAUSS D, FREIWALD T, MCGREGOR R, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of Th1 cells[J]. Nat Immunol, 2022, 23(1): 62-74. DOI: 10.1038/s41590-021-01080-3.
    [15]
    SAUL L, MAIR I, IVENS A, et al. 1,25-Dihydroxyvitamin D3 restrains CD4+ T cell priming ability of CD11c+ dendritic cells by upregulating expression of CD31[J]. Front Immunol, 2019, 10: 600. DOI: 10.3389/fimmu.2019.00600.
    [16]
    王光川, LI XC. 天然免疫细胞的获得性免疫属性及其在移植排斥中的作用[J]. 中华消化外科杂志, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.

    WANG GC, LI XC. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chin J Dig Surg, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.
    [17]
    L BISHOP E, ISMAILOVA A, DIMELOE S, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory[J]. JBMR Plus, 2020, 5(1): e10405. DOI: 10.1002/jbm4.10405.
    [18]
    LOPEZ DV, AL-JABERI FAH, WOETMANN A, et al. Macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses[J]. Front Immunol, 2021, 12: 722806. DOI: 10.3389/fimmu.2021.722806.
    [19]
    JOGDAND GM, MOHANTY S, DEVADAS S. Regulators of Tfh cell differentiation[J]. Front Immunol, 2016, 7: 520. DOI: 10.3389/fimmu.2016.00520.
    [20]
    KANG SW, KIM SH, LEE N, et al. 1,25-Dihyroxyvitamin D3 promotes Foxp3 expression via binding to vitamin D response elements in its conserved noncoding sequence region[J]. J Immunol, 2012, 188(11): 5276-5282. DOI: 10.4049/jimmunol.1101211.
    [21]
    GELDMEYER-HILT K, HEINE G, HARTMANN B, et al. 1,25-Dihydroxyvitamin D3 impairs NF-κB activation in human naïve B cells[J]. Biochem Biophys Res Commun, 2011, 407(4): 699-702. DOI: 10.1016/j.bbrc.2011.03.078.
    [22]
    PALOMARES O, ELEWAUT D, IRVING PM, et al. Regulatory T cells and immunoglobulin E: a new therapeutic link for autoimmunity?[J]. Allergy, 2022, 77(11): 3293-3308. DOI: 10.1111/all.15449.
    [23]
    TSE AK, WAN CK, SHEN XL, et al. 1,25-Dihydroxyvitamin D3 induces biphasic NF-kappaB responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of IkappaB[J]. Exp Cell Res, 2007, 313(8): 1722-1734. DOI: 10.1016/j.yexcr.2007.02.022.
    [24]
    TREPTOW S, GRÜN J, SCHOLZ J, et al. 9-Cis retinoic acid and 1.25-dihydroxyvitamin D3 drive differentiation into IgA+ secreting plasmablasts in human naïve B cells[J]. Eur J Immunol, 2021, 51(1): 125-137. DOI: 10.1002/eji.202048557.
    [25]
    MARTENS PJ, GYSEMANS C, VERSTUYF A, et al. Vitamin D's effect on immune function[J]. Nutrients, 2020, 12(5): 1248. DOI: 10.3390/nu12051248.
    [26]
    CARLBERG C. Molecular endocrinology of vitamin D on the epigenome level[J]. Mol Cell Endocrinol, 2017, 453: 14-21. DOI: 10.1016/j.mce.2017.03.016.
    [27]
    NEME A, SEUTER S, MALINEN M, et al. In vivo transcriptome changes of human white blood cells in response to vitamin D[J]. J Steroid Biochem Mol Biol, 2019, 188: 71-76. DOI: 10.1016/j.jsbmb.2018.11.019.
    [28]
    STOFFELS K, OVERBERGH L, BOUILLON R, et al. Immune regulation of 1alpha-hydroxylase in murine peritoneal macrophages: unravelling the IFNgamma pathway[J]. J Steroid Biochem Mol Biol, 2007, 103(3/4/5): 567-571. DOI: 10.1016/j.jsbmb.2006.12.091.
    [29]
    CHEN Y, LIU W, SUN T, et al. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages[J]. J Immunol, 2013, 190(7): 3687-3695. DOI: 10.4049/jimmunol.1203273.
    [30]
    KANIKARLA-MARIE P, JAIN SK. 1, 25(OH)2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis)[J]. J Steroid Biochem Mol Biol, 2016, 159: 94-101. DOI: 10.1016/j.jsbmb.2016.03.002.
    [31]
    CARLBERG C. Vitamin D signaling in the context of innate immunity: focus on human monocytes[J]. Front Immunol, 2019, 10: 2211. DOI: 10.3389/fimmu.2019.02211.
    [32]
    MARTUCCI G, VOLPES R, PANARELLO G, et al. Vitamin D levels in liver transplantation recipients and early postoperative outcomes: prospective observational DLiverX study[J]. Clin Nutr, 2021, 40(4): 2355-2363. DOI: 10.1016/j.clnu.2020.10.027.
    [33]
    WANG X, WANG H, SHEN B, et al. 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10[J]. Transl Res, 2016, 178: 54-62. DOI: 10.1016/j.trsl.2016.07.006.
    [34]
    PRYTUŁA A, WALLE JV, VAN VLIERBERGHE H, et al. Factors associated with 1,25-dihydroxyvitamin D3 concentrations in liver transplant recipients: a prospective observational longitudinal study[J]. Endocrine, 2016, 52(1): 93-102. DOI: 10.1007/s12020-015-0757-9.
    [35]
    CHIU KW, GOTO S, NAKANO T, et al. Genetic polymorphisms of the hepatic pathways of fatty liver disease after living donor liver transplantation[J]. Liver Int, 2018, 38(12): 2287-2293. DOI: 10.1111/liv.13920.
    [36]
    THORSEN IS, BLESKESTAD IH, ÅSBERG A, et al. Vitamin D as a risk factor for patient survival after kidney transplantation: a prospective observational cohort study[J]. Clin Transplant, 2019, 33(5): e13517. DOI: 10.1111/ctr.13517.
    [37]
    ZUNUNI VAHED S, AHMADIAN E, FOROUGHI P, et al. Vitamin D receptor and vitamin D binding protein gene polymorphisms are associated with renal allograft outcome[J]. Nutrients, 2021, 13(4): 1101. DOI: 10.3390/nu13041101.
    [38]
    KORUCU B, TÜKÜN A, HELVACI Ö, et al. Vitamin D receptor polymorphisms and bone health after kidney transplantation[J]. Turk J Med Sci, 2021, 51(2): 802-812. DOI: 10.3906/sag-1911-156.
    [39]
    MOLINARI P, ALFIERI CM, MATTINZOLI D, et al. Bone and mineral disorder in renal transplant patients: overview of pathology, clinical, and therapeutic aspects[J]. Front Med (Lausanne), 2022, 9: 821884. DOI: 10.3389/fmed.2022.821884.
    [40]
    QUACH K, ABDELMASIH M, CHEN PX, et al. Vitamin D levels and the risk of posttransplant diabetes mellitus after kidney transplantation[J]. Prog Transplant, 2021, 31(2): 133-141. DOI: 10.1177/15269248211002796.
    [41]
    XI Y, MA Y, XIE B, et al. Vitamin D3 combined with antibody agents suppresses alloreactive memory T-cell responses to induce heart allograft long-term survival[J]. Transpl Immunol, 2021, 66: 101374. DOI: 10.1016/j.trim.2021.101374.
    [42]
    SONG J, CHEN X, CHENG L, et al. Vitamin D receptor restricts T helper 2-biased inflammation in the heart[J]. Cardiovasc Res, 2018, 114(6): 870-879. DOI: 10.1093/cvr/cvy034.
    [43]
    PRZYBYŁOWSKI P, WASILEWSKI G, KOC-ŻÓRAWSKA E, et al. Vitamin D concentration in patients after heart and kidney transplantation[J]. Transplant Proc, 2018, 50(7): 2100-2104. DOI: 10.1016/j.transproceed.2018.02.171.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (270) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return