Volume 14 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Zheng Zihe, Xu Zheng, Lin Xinfan, et al. The past, present and future of heart transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 227-234. doi: 10.3969/j.issn.1674-7445.2023.02.008
Citation: Zheng Zihe, Xu Zheng, Lin Xinfan, et al. The past, present and future of heart transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 227-234. doi: 10.3969/j.issn.1674-7445.2023.02.008

The past, present and future of heart transplantation

doi: 10.3969/j.issn.1674-7445.2023.02.008
More Information
  • Corresponding author: Dai Xiaofu, Email: daixiaofu719@hotmail.com
  • Received Date: 2022-11-01
    Available Online: 2023-03-15
  • Publish Date: 2023-03-15
  • Heart transplantation is one of the most effective strategies to treat end-stage heart failure. Multiple challenges, such as difficulty in preservation of heart allograft, rejection and postoperative complications, emerge in heart allotransplantation. After decades of research and practice, most problems have been resolved. Nevertheless, the shortage of donor organs has become increasingly prominent. To alleviate the shortage of donor organs, artificial heart and heart xenotransplantation have captivated attention, and obtained significant progress in recent years. The application of artificial heart in clinical practice has significantly enhanced the survival rate of patients with end-stage heart failure, which is expected to become the standard treatment for end-stage heart failure. Heart xenotransplantation still faces many challenges, which is still far from clinical application. In this article, the history of heart transplantation, development of heart allotransplantation, use of artificial heart and research progress on heart xenotransplantation were reviewed, and the future development direction of heart transplantation was predicted.

     

  • loading
  • [1]
    MA LY, CHEN WW, GAO RL, et al. China cardiovascular diseases report 2018: an updated summary[J]. J Geriatr Cardiol, 2020, 17(1): 1-8. DOI: 10.11909/j.issn.1671-5411.2020.01.001.
    [2]
    Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2021: an updated summary[J]. Biomed Environ Sci, 2022, 35(7): 573-603. DOI: 10.3967/bes2022.079.
    [3]
    VAN DER MEER P, GAGGIN HK, DEC GW. ACC/AHA versus ESC guidelines on heart failure: JACC guideline comparison[J]. J Am Coll Cardiol, 2019, 73(21): 2756-2768. DOI: 10.1016/j.jacc.2019.03.478.
    [4]
    SUN YF, WANG ZW, ZHANG J, et al. Current status of and opinions on heart transplantation in China[J]. Curr Med Sci, 2021, 41(5): 841-846. DOI: 10.1007/s11596-021-2444-9.
    [5]
    REICH H, RAMZY D, MORIGUCHI J, et al. Acceptable post-heart transplant outcomes support temporary MCS prioritization in the new OPTN|UNOS heart allocation policy[J]. Transplant Proc, 2021, 53(1): 353-357. DOI: 10.1016/j.transproceed.2020.04.1819.
    [6]
    GANAPATHI AM, LAMPERT BC, MOKADAM NA, et al. Allocation changes in heart transplantation: what has really changed? [J]. J Thorac Cardiovasc Surg, 2023, 165(2): 724-733. DOI: 10.1016/j.jtcvs.2021.03.031.
    [7]
    KIM ST, HELMERS MR, IYENGAR A, et al. Assessing predicted heart mass size matching in obese heart transplant recipients[J]. J Heart Lung Transplant, 2021, 40(8): 805-813. DOI: 10.1016/j.healun.2021.04.020.
    [8]
    REUL RM JR, ZHANG TS, RANA AA, et al. Consistent improvements in short- and long-term survival following heart transplantation over the past three decades[J]. Clin Transplant, 2021, 35(4): e14241. DOI: 10.1111/ctr.14241.
    [9]
    KHUSH KK, POTENA L, CHERIKH WS, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; focus on deceased donor characteristics[J]. J Heart Lung Transplant, 2020, 39(10): 1003-1015. DOI: 10.1016/j.healun.2020.07.010.
    [10]
    CHAUHAN D, ORLANDI V, RAJAB TK, et al. Postoperative outcomes in infants undergoing ABO-incompatible heart transplantation in the United States[J]. Ann Thorac Surg, 2022, 114(5): 1746-1752. DOI: 10.1016/j.athoracsur.2021.08.039.
    [11]
    BEEMAN A, MUTHIALU N. ABO-incompatible heart transplantation in children-a systematic review of current practice[J]. Indian J Thorac Cardiovasc Surg, 2020, 36(Suppl 2): 190-193. DOI: 10.1007/s12055-020-00971-8.
    [12]
    HUCKABY LV, SEESE LM, HANDZEL R, et al. Center-level utilization of hepatitis C virus-positive donors for orthotopic heart transplantation[J]. Transplantation, 2021, 105(12): 2639-2645. DOI: 10.1097/TP.0000000000003674.
    [13]
    AWAD MA, SHAH A, GRIFFITH BP. Current status and outcomes in heart transplantation: a narrative review[J]. Rev Cardiovasc Med, 2022, 23(1): 11. DOI: 10.31083/j.rcm2301011.
    [14]
    HORNUSS D, RUDI A, KOERNER L, et al. HBV-infection rate and long-term outcome after liver-transplantation of anti-HBc-positive liver-grafts to HBV-na?ve recipients: a retrospective study[J]. Clin Res Hepatol Gastroenterol, 2021, 45(2): 101496. DOI: 10.1016/j.clinre.2020.07.003.
    [15]
    LECHIANCOLE A, VENDRAMIN I, SPONGA S, et al. Influence of donor-transmitted coronary artery disease on long-term outcomes after heart transplantation - a retrospective study[J]. Transpl Int, 2021, 34(2): 281-289. DOI: 10.1111/tri.13793.
    [16]
    FIORE A, GRANDE AM, GATTI G, et al. Valvular surgery in donor hearts before orthotopic heart transplantation[J]. Arch Cardiovasc Dis, 2020, 113(11): 674-678. DOI: 10.1016/j.acvd.2020.05.010.
    [17]
    WEVER PINZON O, STODDARD G, DRAKOS SG, et al. Impact of donor left ventricular hypertrophy on survival after heart transplant[J]. Am J Transplant, 2011, 11(12): 2755-2761. DOI: 10.1111/j.1600-6143.2011.03744.x.
    [18]
    JAWITZ OK, FUDIM M, RAMAN V, et al. Reassessing recipient mortality under the new heart allocation system: an updated UNOS registry analysis[J]. JACC Heart Fail, 2020, 8(7): 548-556. DOI: 10.1016/j.jchf.2020.03.010.
    [19]
    MULLAN CW, CHOUAIRI F, SEN S, et al. Changes in use of left ventricular assist devices as bridge to transplantation with new heart allocation policy[J]. JACC Heart Fail, 2021, 9(6): 420-429. DOI: 10.1016/j.jchf.2021.01.010.
    [20]
    WANG Y, CAI J, SUN Y, et al. Extended donor criteria in heart transplantation: a retrospective study from a single Chinese institution[J]. J Thorac Dis, 2018, 10(4): 2153-2165. DOI: 10.21037/jtd.2018.03.149.
    [21]
    MINASIAN SM, GALAGUDZA MM, DMITRIEV YV, et al. Preservation of the donor heart: from basic science to clinical studies[J]. Interact Cardiovasc Thorac Surg, 2015, 20(4): 510-519. DOI: 10.1093/icvts/ivu432.
    [22]
    CANNATA A, BOTTA L, COLOMBO T, et al. Does the cardioplegic solution have an effect on early outcomes following heart transplantation? [J]. Eur J Cardiothorac Surg, 2012, 41(4): e48-e53. DOI: 10.1093/ejcts/ezr321.
    [23]
    GEORGE TJ, ARNAOUTAKIS GJ, BAUMGARTNER WA, et al. Organ storage with University of Wisconsin solution is associated with improved outcomes after orthotopic heart transplantation [J]. J Heart Lung Transplant, 2011, 30(9): 1033-1043. DOI: 10.1016/j.healun.2011.05.005.
    [24]
    KHUSH KK, PATEL J, PINNEY S, et al. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: a prospective multicenter study [J]. Am J Transplant, 2019, 19(10): 2889-2899. DOI: 10.1111/ajt.15339.
    [25]
    DENG MC, EISEN HJ, MEHRA MR, et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling [J]. Am J Transplant, 2006, 6(1): 150-160. DOI: 10.1111/j.1600-6143.2005.01175.x.
    [26]
    VAN AELST LN, SUMMER G, LI S, et al. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection [J]. Am J Transplant, 2016, 16(1): 99-110. DOI: 10.1111/ajt.13421.
    [27]
    AMIN AA, ARAJ FG, ARIYAMUTHU VK, et al. Impact of induction immunosuppression on patient survival in heart transplant recipients treated with tacrolimus and mycophenolic acid in the current allocation era [J]. Clin Transplant, 2019, 33(8): e13651. DOI: 10.1111/ctr.13651.
    [28]
    MATAR AJ, CREPEAU RL, MUNDINGER GS, et al. Large animal models of vascularized composite allotransplantation: a review of immune strategies to improve allograft outcomes [J]. Front Immunol, 2021, 12: 664577. DOI: 10.3389/fimmu.2021.664577.
    [29]
    TONSHO M, LEE S, AOYAMA A, et al. Tolerance of lung allografts achieved in nonhuman primates via mixed hematopoietic chimerism [J]. Am J Transplant, 2015, 15(8): 2231-2239. DOI: 10.1111/ajt.13274.
    [30]
    VINCENTI F, ROSTAING L, GRINYO J, et al. Belatacept and long-term outcomes in kidney transplantation [J]. N Engl J Med, 2016, 374(4): 333-343. DOI: 10.1056/NEJMoa1506027.
    [31]
    LIN CH, ANGGELIA MR, CHENG HY, et al. The intragraft vascularized bone marrow component plays a critical role in tolerance induction after reconstructive transplantation [J]. Cell Mol Immunol, 2021, 18(2): 363-373. DOI: 10.1038/s41423-019-0325-y.
    [32]
    OH BC, FURTMüLLER GJ, FRYER ML, et al. Vascularized composite allotransplantation combined with costimulation blockade induces mixed chimerism and reveals intrinsic tolerogenic potential [J]. JCI Insight, 2020, 5(7): e128560. DOI: 10.1172/jci.insight.128560.
    [33]
    DURAN-STRUUCK R, SONDERMEIJER HP, BüHLER L, et al. Effect of ex vivo-expanded recipient regulatory T cells on hematopoietic chimerism and kidney allograft tolerance across MHC barriers in cynomolgus macaques [J]. Transplantation, 2017, 101(2): 274-283. DOI: 10.1097/TP.0000000000001559.
    [34]
    EZZELARAB MB, ZAHORCHAK AF, LU L, et al. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates[J]. Am J Transplant, 2013, 13(8): 1989-2005. DOI: 10.1111/ajt.12310.
    [35]
    SCHNIDER JT, WEINSTOCK M, PLOCK JA, et al. Site-specific immunosuppression in vascularized composite allotransplantation: prospects and potential[J]. Clin Dev Immunol, 2013: 495212. DOI: 10.1155/2013/495212.
    [36]
    DETELICH D, MARKMANN JF. The dawn of liver perfusion machines[J]. Curr Opin Organ Transplant, 2018, 23(2): 151-161. DOI: 10.1097/MOT.0000000000000500.
    [37]
    KHUSH KK, CHERIKH WS, CHAMBERS DC, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult heart transplantation report - 2019; focus theme: donor and recipient size match[J]. J Heart Lung Transplant, 2019, 38(10): 1056-1066. DOI: 10.1016/j.healun.2019.08.004.
    [38]
    ASLEH R, BRIASOULIS A, SMITH B, et al. Association of aspirin treatment with cardiac allograft vasculopathy progression and adverse outcomes after heart transplantation[J]. J Card Fail, 2021, 27(5): 542-551. DOI: 10.1016/j.cardfail.2021.01.019.
    [39]
    SPARTALIS M, SPARTALIS E, TZATZAKI E, et al. Cardiac allograft vasculopathy after heart transplantation: current prevention and treatment strategies[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 303-311. DOI: 10.26355/eurrev_201901_16777.
    [40]
    MUDIGONDA P, BERARDI C, CHETRAM V, et al. Implications of cancer prior to and after heart transplantation[J]. Heart, 2022, 108(6): 414-421. DOI: 10.1136/heartjnl-2020-318139.
    [41]
    CARROZZINI M, BOTTIO T, CARAFFA R, et al. Impact of continuous flow left ventricular assist device on heart transplant candidates: a multi-state survival analysis[J]. J Clin Med, 2022, 11(12): 3425. DOI: 10.3390/jcm11123425.
    [42]
    BIFULCO O, BOTTIO T, CARAFFA R, et al. Marginal versus standard donors in heart transplantation: proper selection means heart transplant benefit[J]. J Clin Med, 2022, 11(9): 2665. DOI: 10.3390/jcm11092665.
    [43]
    CARAFFA R, BEJKO J, CARROZZINI M, et al. A device strategy-matched comparison analysis among different intermacs profiles: a single center experience[J]. J Clin Med, 2022, 11(16): 4901. DOI: 10.3390/jcm11164901.
    [44]
    KORMOS RL, COWGER J, PAGANI FD, et al. The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships[J]. J Heart Lung Transplant, 2019, 38(2): 114-126. DOI: 10.1016/j.healun.2018.11.013.
    [45]
    DE BY TMMH, MOHACSI P, GAHL B, et al. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): second report[J]. Eur J Cardiothorac Surg, 2018, 53(2): 309-316. DOI: 10.1093/ejcts/ezx320.
    [46]
    HAYWARD C, ADACHI I, BAUDART S, et al. Global best practices consensus: long-term management of patients with hybrid centrifugal flow left ventricular assist device support[J]. J Thorac Cardiovasc Surg, 2022, 164(4): 1120-1137. DOI: 10.1016/j.jtcvs.2022.03.035.
    [47]
    TEUTEBERG JJ, CLEVELAND JC JR, COWGER J, et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: the changing landscape of devices and indications[J]. Ann Thorac Surg, 2020, 109(3): 649-660. DOI: 10.1016/j.athoracsur.2019.12.005.
    [48]
    KIRKLIN JK, NAFTEL DC, PAGANI FD, et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? [J]. J Thorac Cardiovasc Surg, 2012, 144(3): 584-603. DOI: 10.1016/j.jtcvs.2012.05.044.
    [49]
    BOULET J, CUNNINGHAM JW, MEHRA MR. Cardiac xenotransplantation: challenges, evolution, and advances[J]. JACC Basic Transl Sci, 2022, 7(7): 716-729. DOI: 10.1016/j.jacbts.2022.05.003.
    [50]
    YAMADA K, YAZAWA K, SHIMIZU A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1, 3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 2005, 11(1): 32-34. DOI: 10.1038/nm1172.
    [51]
    SATYANANDA V, HARA H, EZZELARAB MB, et al. New concepts of immune modulation in xenotransplantation[J]. Transplantation, 2013, 96(11): 937-945. DOI: 10.1097/TP.0b013e31829bbcb2.
    [52]
    RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/Cas technology in pig-to-human xenotransplantation research[J]. Int J Mol Sci, 2021, 22(6): 3196. DOI: 10.3390/ijms22063196.
    [53]
    PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [54]
    DELTCHEVA E, CHYLINSKI K, SHARMA CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607. DOI: 10.1038/nature09886.
    [55]
    YANG L, GüELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs) [J]. Science, 2015, 350(6264): 1101-1104. DOI: 10.1126/science.aad1191.
    [56]
    NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. DOI: 10.1126/science.aan4187.
    [57]
    REARDON S. First pig-to-human heart transplant: what can scientists learn? [J]. Nature, 2022, 601(7893): 305-306. DOI: 10.1038/d41586-022-00111-9.
    [58]
    GRIFFITH BP, GOERLICH CE, SINGH AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. N Engl J Med, 2022, 387(1): 35-44. DOI: 10.1056/NEJMoa2201422.
    [59]
    CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7): 1586-1597. DOI: 10.1016/j.cell.2016.05.082.
    [60]
    HOFBAUER P, JAHNEL SM, PAPAI N, et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell, 2021, 184(12): 3299-3317. DOI: 10.1016/j.cell.2021.04.034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (327) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return