Volume 13 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Liu Hanlin, Dai Xin, Xiao Yijun, et al. Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019
Citation: Liu Hanlin, Dai Xin, Xiao Yijun, et al. Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 537-542. doi: 10.3969/j.issn.1674-7445.2022.04.019

Research progress on the role of bile salts in ischemic-type biliary lesion after liver transplantation

doi: 10.3969/j.issn.1674-7445.2022.04.019
More Information
  • Corresponding author: Wu Wei, Email: wuweizj@163.com
  • Received Date: 2022-02-08
    Available Online: 2022-07-14
  • Publish Date: 2022-07-15
  • Ischemic-type biliary lesion (ITBL) refers to biliary tract injury caused by insufficient blood supply of hepatic artery, which is one of the main factors affecting the long-term survival and quality of life of liver transplant recipients. The incidence of ITBL is associated with cold and warm ischemia, acute and chronic rejection, cytomegalovirus infection and the bile effect, etc. The occurrence of ITBL is a complicated process involving with multiple factors and steps. The therapeutic option of ITBL is extremely limited. A large proportion of ITBL patients should undergo repeated liver transplantation. ITBL has become one of the most critical factors preventing further advancement of liver transplantation. Hence, it is of significance to strengthen prevention and explore more effective modalities. Recent studies have found that toxic injury of bile salts plays a central role in ITBL. Active regulation of bile components, regulation of bile acid-related receptor expression and blockage or activation of bile acid-related signaling pathways probably have potentials in the prevention and treatment of ITBL. In this article, the cytotoxicity of bile salts and the mechanism of bicarbonate umbrella in the incidence and progression of ITBL after liver transplantation were reviewed, aiming to provide reference for the diagnosis and treatment of ITBL.

     

  • loading
  • [1]
    陈耿, 周毅, 冯凯. 移植物胆管病发病机制与防治策略的研究进展[J]. 中华普通外科杂志, 2019, 34(8): 736-738. DOI: 10.3670.cma.j.issn.1007-631X.2019.08.033.

    CHEN G, ZHOU Y, FENG K. Research progress on the pathogenesis and prevention strategies of graft cholangiopathies[J]. Chin J Gen Surg, 2019, 34(8): 736-738. DOI: 10.3670.cma.j.issn.1007-631X.2019.08.033.
    [2]
    CHERCHI V, VETRUGNO L, ZANINI V, et al. Association between indocyanine green clearance test and ischemic type biliary lesions within one year after orthotopic liver transplantation[J]. Gastroenterol Hepatol, 2021, 44(10): 687-695. DOI: 10.1016/j.gastrohep.2021.03.005.
    [3]
    LI J, GUO QJ, JIANG WT, et al. Complex liver retransplantation to treat graft loss due to long-term biliary tract complication after liver transplantation: a case report[J]. World J Clin Cases, 2020, 8(3): 568-576. DOI: 10.12998/wjcc.v8.i3.568.
    [4]
    CZIGANY Z, LURJE I, SCHMELZLE M, et al. Ischemia-reperfusion injury in marginal liver grafts and the role of hypothermic machine perfusion: molecular mechanisms and clinical implications[J]. J Clin Med, 2020, 9(3): 846. DOI: 10.3390/jcm9030846.
    [5]
    GEUKEN E, VISSER D, KUIPERS F, et al. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation[J]. J Hepatol, 2004, 41(6): 1017-1025. DOI: 10.1016/j.jhep.2004.08.023.
    [6]
    YSKA MJ, BUIS CI, MONBALIU D, et al. The role of bile salt toxicity in the pathogenesis of bile duct injury after non-heart-beating porcine liver transplantation[J]. Transplantation, 2008, 85(11): 1625-1631. DOI: 10.1097/TP.0b013e318170f5f7.
    [7]
    CHEN G, WANG S, BIE P, et al. Endogenous bile salts are associated with bile duct injury in the rat liver transplantation model[J]. Transplantation, 2009, 87(3): 330-339. DOI: 10.1097/TP.0b013e3181954fee.
    [8]
    李萌, 平键, 徐列明. Mdr2基因敲除小鼠在肝病研究中的应用[J]. 中华肝脏病杂志, 2021, 29(6): 585-590. DOI: 10.3760/cma.j.cn501113-20191007-00364.

    LI M, PING J, XU LM. Application of Mdr2 gene knockout mice in liver disease research[J]. Chin J Hepatol, 2021, 29(6): 585-590. DOI: 10.3760/cma.j.cn501113-20191007-00364.
    [9]
    WANG R, SHEPS JA, LIU L, et al. Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2-/- mice[J]. J Lipid Res, 2019, 60(1): 85-97. DOI: 10.1194/jlr.M088070.
    [10]
    CHEN S, FANG H, LI J, et al. Donor brain death leads to a worse ischemia-reperfusion injury and biliary injury after liver transplantation in rats[J]. Transplant Proc, 2020, 52(1): 373-382. DOI: 10.1016/j.transproceed.2019.10.012.
    [11]
    HERTL M, HERTL MC, KUNKEL P, et al. Tauroursodeoxycholate ameliorates reperfusion injury after pig liver transplantation[J]. Transpl Int, 1999, 12(6): 454-462. DOI: 10.1007/s001470050257.
    [12]
    FALASCA L, TISONE G, PALMIERI G, et al. Protective role of tauroursodeoxycholate during harvesting and cold storage of human liver: a pilot study in transplant recipients[J]. Transplantation, 2001, 71(9): 1268-1276. DOI: 10.1097/00007890-200105150-00015.
    [13]
    HOEKSTRA H, TIAN Y, JOCHUM W, et al. Dearterialization of the liver causes intrahepatic cholestasis due to reduced bile transporter expression[J]. Transplantation, 2008, 85(8): 1159-1166. DOI: 10.1097/TP.0b013e31816b2465.
    [14]
    CHENG L, ZHAO L, LI D, et al. Role of cholangiocyte bile acid transporters in large bile duct injury after rat liver transplantation[J]. Transplantation, 2010, 90(2): 127-134. DOI: 10.1097/TP.0b013e3181e0deaf.
    [15]
    MORITA SY, IKEDA Y, TSUJI T, et al. Molecular mechanisms for protection of hepatocytes against bile salt cytotoxicity[J]. Chem Pharm Bull (Tokyo), 2019, 67(4): 333-340. DOI: 10.1248/cpb.c18-01029.
    [16]
    IKEDA Y. Mechanism of taurohyodeoxycholate-induced biliary phospholipid efflux -understanding the function of the ABCB4 enhancer for developing therapeutic agents against bile salt-induced liver injury[J]. Yakugaku Zasshi, 2020, 140(11): 1329-1334. DOI: 10.1248/yakushi.20-00156.
    [17]
    VAN NIEKERK J, KERSTEN R, BEUERS U. Role of bile acids and the biliary HCO3- umbrella in the pathogenesis of primary biliary cholangitis[J]. Clin Liver Dis, 2018, 22(3): 457-479. DOI: 10.1016/j.cld.2018.03.013.
    [18]
    PRIETO J, BANALES JM, MEDINA JF. Primary biliary cholangitis: pathogenic mechanisms[J]. Curr Opin Gastroenterol, 2021, 37(2): 91-98. DOI: 10.1097/MOG.0000000000000703.
    [19]
    ARENAS F, HERVÍAS I, SÁEZ E, et al. Promoter hypermethylation of the AE2/SLC4A2 gene in PBC[J]. JHEP Rep, 2019, 1(3): 145-153. DOI: 10.1016/j.jhepr.2019.05.006.
    [20]
    HOHENESTER S, MAILLETTE DE BUY WENNIGER L, JEFFERSON DM, et al. Biliary bicarbonate secretion constitutes a protective mechanism against bile acid-induced injury in man[J]. Dig Dis, 2011, 29(1): 62-65. DOI: 10.1159/000324687.
    [21]
    CHANG JC, GO S, VERHOEVEN AJ, et al. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1232-1239. DOI: 10.1016/j.bbadis.2017.09.022.
    [22]
    ROSSETTI T, JACKVONY S, BUCK J, et al. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase[J]. Interface Focus, 2021, 11(2): 20200034. DOI: 10.1098/rsfs.2020.0034.
    [23]
    TEODORO JS, AMORIM JA, MACHADO IF, et al. The soluble adenylyl cyclase inhibitor LRE1 prevents hepatic ischemia/reperfusion damage through improvement of mitochondrial function[J]. Int J Mol Sci, 2020, 21(14): 4896. DOI: 10.3390/ijms21144896.
    [24]
    CHANG JC, GO S, GILGLIONI EH, et al. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD+ redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation[J]. Biochim Biophys Acta Bioenerg, 2021, 1862(4): 148367. DOI: 10.1016/j.bbabio.2020.148367.
    [25]
    ASLAM M, LADILOV Y. Regulation of mitochondrial homeostasis by sac-derived camp pool: basic and translational aspects[J]. Cells, 2021, 10(2): 473. DOI: 10.3390/cells10020473.
    [26]
    PUGA MOLINA LC, LUQUE GM, BALESTRINI PA, et al. Molecular basis of human sperm capacitation[J]. Front Cell Dev Biol, 2018, 6: 72. DOI: 10.3389/fcell.2018.00072.
    [27]
    VIÑA D, SEOANE N, VASQUEZ EC, et al. cAMP compartmentalization in cerebrovascular endothelial cells: new therapeutic opportunities in Alzheimer's disease[J]. Cells, 2021, 10(8): 1951. DOI: 10.3390/cells10081951.
    [28]
    SONG J, DU J, TAN X, et al. Dexmedetomidine protects the heart against ischemia reperfusion injury via regulation of the bradykinin receptors[J]. Eur J Pharmacol, 2021, 911: 174493. DOI: 10.1016/j.ejphar.2021.174493.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (369) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return