Volume 13 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Li Xin, Pan Dengke, Zhou Jia, et al. Protective role of expression of human complement regulatory protein hCD55 in islet xenotransplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 475-482. doi: 10.3969/j.issn.1674-7445.2022.04.010
Citation: Li Xin, Pan Dengke, Zhou Jia, et al. Protective role of expression of human complement regulatory protein hCD55 in islet xenotransplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 475-482. doi: 10.3969/j.issn.1674-7445.2022.04.010

Protective role of expression of human complement regulatory protein hCD55 in islet xenotransplantation

doi: 10.3969/j.issn.1674-7445.2022.04.010
More Information
  • Corresponding author: Gong Manlin, Email: mlg@clonorgan.com
  • Received Date: 2022-04-06
    Available Online: 2022-07-14
  • Publish Date: 2022-07-15
  •   Objective  To validate whether the expression of human cluster of differentiation 55 (hCD55) protein in porcine islet cells could inhibit the activation of complement components in human serum.  Methods  Four adult pigs with WT (wild type), GTKO [α-1, 3-galactosyltransferase (GGTA1) knockout], GTKO/hCD55 and hCD55 genotypes were selected. Islet cells were isolated from WT, GTKO and GTKO/hCD55 pigs, and the purity and insulin secretion function were detected. The expression of hCD55 at the DNA, RNA and protein levels was analyzed by agarose gel electrophoresis, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry, respectively. Complement-dependent cytotoxicity assay and complement deposition assay were performed under the incubation conditions with fresh human serum.  Results  The purity of isolated porcine islet cells from three genotype pigs was > 75%, and the glycemic index was > 1. The expression of hCD55 messenger RNA(mRNA) and protein in GTKO/hCD55 porcine islet cells decreased the deposition of human complement component C3c and membrane-attacking complex C5b-9, and reduced the cytotoxicity.  Conclusions  The expression of hCD55 protein in porcine islet cells could inhibit the activation of human complement and reduce complement-mediated killing effect, indicating that hCD55 protein could exert complement protection effect on porcine islet cells. These findings provide theoretical basis for the application of hCD55 in islet xenotransplantation.

     

  • loading
  • [1]
    PETERSMANN A, MÜLLER-WIELAND D, MÜLLER UA, et al. Definition, classification and diagnosis of diabetes mellitus[J]. Exp Clin Endocrinol Diabetes, 2019, 127(S 1): S1-S7. DOI: 10.1055/a-1018-9078.
    [2]
    HULL CM, PEAKMAN M, TREE TIM. Regulatory T cell dysfunction in type 1 diabetes: what's broken and how can we fix it?[J]. Diabetologia, 2017, 60(10): 1839-1850. DOI: 10.1007/s00125-017-4377-1.
    [3]
    ILONEN J, LEMPAINEN J, VEIJOLA R. The heterogeneous pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(11): 635-650. DOI: 10.1038/s41574-019-0254-y.
    [4]
    DEDRICK S, SUNDARESH B, HUANG Q, et al. The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis[J]. Front Endocrinol (Lausanne), 2020, 11: 78. DOI: 10.3389/fendo.2020.00078.
    [5]
    LEE AS, TWIGG SM, FLACK JR. Metabolic syndrome in type 1 diabetes and its association with diabetes complications[J]. Diabet Med, 2021, 38(2): e14376. DOI: 10.1111/dme.14376.
    [6]
    BELETE R, ATARO Z, ABDU A, et al. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: a systematic review and Meta-analysis[J]. Diabetol Metab Syndr, 2021, 13(1): 25. DOI: 10.1186/s13098-021-00641-8.
    [7]
    刘自强, 接传红, 王建伟, 等. 糖尿病视网膜病变免疫机制的研究进展[J]. 眼科新进展, 2022, 42(2): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ202202013.htm

    LIU ZQ, JIE CH, WANG JW, et al. Research progress in immune mechanisms against diabetic retinopathy[J]. Recent Adv Ophthalmol, 2022, 42(2): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ202202013.htm
    [8]
    杨晓丽, 李明星. 高频超声及弹性成像评估2型糖尿病周围神经病变的临床价值[J]. 实用医学杂志, 2020, 36(3): 390-394. DOI: 10.3969/j.issn.1006-5725.2020.03.023.

    YANG XL, LI MX. Clinical value of high frequency ultrasound and virtual touch quantification in evaluating peripheral neuropathy of type 2 diabetes mellitus[J]. J Pract Med, 2020, 36(3): 390-394. DOI: 10.3969/j.issn.1006-5725.2020.03.023.
    [9]
    顾蕙兰, 张梅, 杨涛. 1型糖尿病心血管并发症相关危险因素的研究进展[J]. 中华糖尿病杂志, 2020, 12(12): 1044-1048. DOI: 10.3760/cma.j.cn115791-20200604-00346.

    GU HL, ZHANG M, YANG T. Research progress of risk factors for cardiovascular complications of type 1 diabetes mellitus[J]. Chin J Diabetes, 2020, 12(12): 1044-1048. DOI: 10.3760/cma.j.cn115791-20200604-00346.
    [10]
    SOMA D, NIKUMBH T, MANGUS RS, et al. Distal allograft pancreatectomy for graft salvage after pancreas transplantation[J]. Clin Transplant, 2021, 35(6): e14307. DOI: 10.1111/ctr.14307.
    [11]
    王芳菲, 吕少诚, 贺强. 胰腺移植治疗终末期糖尿病研究进展[J]. 解放军医学院学报, 2020, 41(11): 1118-1121, 1135. DOI: 10.3969/j.issn.2095-5227.2020.11.013.

    WANG FF, LYU SC, HE Q. Research advances in pancreatic transplantation for end-stage diabetes mellitus[J]. Acad J Chin PLA Med Sch, 2020, 41(11): 1118-1121, 1135. DOI: 10.3969/j.issn.2095-5227.2020.11.013.
    [12]
    石宜铭. 胰腺移植的现状与展望[J]. 中华消化外科杂志, 2020, 19(12): 1243-1247. DOI: 10.3760/cma.j.cn115610-20200927-00637.

    SHI YM. Current status and prospect of pancreas transplantation[J]. Chin J Dig Surg, 2020, 19(12): 1243-1247. DOI: 10.3760/cma.j.cn115610-20200927-00637.
    [13]
    段金良, 白芳, 凌象超, 等. 胰岛移植治疗晚期糖尿病的研究进展[J]. 中华医学杂志, 2021, 101(4): 302-305. DOI: 10.3760/cma.j.cn112137-20200907-02577.

    DUAN JL, BAI F, LING XC, et al. Research progress of islet transplantation in the treatment of advanced diabetes mellitus[J]. Natl Med J China, 2021, 101(4): 302-305. DOI: 10.3760/cma.j.cn112137-20200907-02577.
    [14]
    PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492. DOI: 10.1111/xen.12492.
    [15]
    殷浩. 胰岛移植最新进展及前景展望[J]. 器官移植, 2019, 10(6): 678-683. DOI: 10.3969/j.issn.1674-7445.2019.06.008.

    YIN H. The latest progress and prospect of islet transplantation[J]. Organ Transplant, 2019, 10(6): 678-683. DOI: 10.3969/j.issn.1674-7445.2019.06.008.
    [16]
    季峻松, 郭猛. 胰岛移植的历史、现状与挑战[J]. 外科理论与实践, 2019, 24(1): 88-92. DOI: 10.16139/j.1007-9610.2019.01.019.

    JI JS, GUO M. The history, current situation and challenges of islet transplantation[J]. J Surg Concepts Pract, 2019, 24(1): 88-92. DOI: 10.16139/j.1007-9610.2019.01.019.
    [17]
    MATSUMOTO S, SHIMODA M. Current situation of clinical islet transplantation from allogeneic toward xenogeneic[J]. J Diabetes, 2020, 12(10): 733-741. DOI: 10.1111/1753-0407.13041.
    [18]
    王之旭. 异种胰岛移植研究最新进展[D]. 厦门: 厦门大学, 2019.
    [19]
    VAN DER WINDT DJ, BOTTINO R, CASU A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J]. Am J Transplant, 2009, 9(12): 2716-2726. DOI: 10.1111/j.1600-6143.2009.02850.x.
    [20]
    COE TM, MARKMANN JF, RICKERT CG. Current status of porcine islet xenotransplantation[J]. Curr Opin Organ Transplant, 2020, 25(5): 449-456. DOI: 10.1097/MOT.0000000000000794.
    [21]
    EKSER B, COOPER DK. Overcoming the barriers to xenotransplantation: prospects for the future[J]. Expert Rev Clin Immunol, 2010, 6(2): 219-230. DOI: 10.1586/eci.09.81.
    [22]
    周小青, 刘玉, 唐成程, 等. 敲除GGTA1同时表达人白细胞抗原G5的基因修饰猪的构建[J]. 生物工程学报, 2022, 38(3): 1096-1111. DOI: 10.13345/j.cjb.210655.

    ZHOU XQ, LIU Y, TAGN CC, et al. Generation of genetic modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5[J]. Chin J Biotech, 2022, 38(3): 1096-1111. DOI: 10.13345/j.cjb.210655.
    [23]
    GARCIA BL, ZWARTHOFF SA, ROOIJAKKERS SH, et al. Novel evasion mechanisms of the classical complement pathway[J]. J Immunol, 2016, 197(6): 2051-2060. DOI: 10.4049/jimmunol.1600863.
    [24]
    ZEWDE NT, HSU RV, MORIKIS D, et al. Systems biology modeling of the complement system under immune susceptible pathogens[J]. Front Phys, 2021, 9: 603704. DOI: 10.3389/fphy.2021.603704.
    [25]
    许晅, 李璋, 马群飞, 等. 胞内补体系统的研究进展[J]. 中国免疫学杂志, 2022, 38(4): 482-487. DOI: 10.3969/j.issn.1000-484X.2022.04.019.

    XU X, LI Z, MA QF, et al. Research progress of intracellular complement system[J]. Chin J Immunol, 2022, 38(4): 482-487. DOI: 10.3969/j.issn.1000-484X.2022.04.019.
    [26]
    BAKSHI S, CUNNINGHAM F, NICHOLS EM, et al. Mathematical modelling of alternative pathway of complement system[J]. Bull Math Biol, 2020, 82(2): 33. DOI: 10.1007/s11538-020-00708-z.
    [27]
    LING M, MURALI M. Analysis of the complement system in the clinical immunology laboratory[J]. Clin Lab Med, 2019, 39(4): 579-590. DOI: 10.1016/j.cll.2019.07.006.
    [28]
    MARTÍNEZ-ALARCÓN L, LIARTE S, QUEREDA JJ, et al. Profiling Human CD55 transgene performance assist in selecting best suited specimens and tissues for swine organ xenotransplantation[J]. Biology (Basel), 2021, 10(8): 747. DOI: 10.3390/biology10080747.
    [29]
    GELLER A, YAN J. The role of membrane bound complement regulatory proteins in tumor development and cancer immunotherapy[J]. Front Immunol, 2019, 10: 1074. DOI: 10.3389/fimmu.2019.01074.
    [30]
    FENG H, LI T, DU J, et al. Both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation[J]. Front Immunol, 2022, 13: 849711. DOI: 10.3389/fimmu.2022.849711.
    [31]
    DELAUNE V, BERNEY T, LACOTTE S, et al. Intraportal islet transplantation: the impact of the liver microenvironment[J]. Transpl Int, 2017, 30(3): 227-238. DOI: 10.1111/tri.12919.
    [32]
    容勋精. 人补体调节蛋白CD46与异种移植[J]. 海南医学, 2021, 32(18): 2406-2411. DOI: 10.3969/j.issn.1003-6350.2021.18.026.

    RONG XJ. Human complement regulatory protein CD46 and xenotransplantation[J]. Hainan Med J, 2021, 32(18): 2406-2411. DOI: 10.3969/j.issn.1003-6350.2021.18.026.
    [33]
    SCHMIDT P, GOTO M, LE MAUFF B, et al. Adenovirus-mediated expression of human CD55 or CD59 protects adult porcine islets from complement-mediated cell lysis by human serum[J]. Transplantation, 2003, 75(5): 697-702. DOI: 10.1097/01.TP.0000053249.39753.D6.
    [34]
    张超, 石宁宁, 高景波, 等. 猪Rosa26位点敲入Loxp修饰的hCD55成纤维细胞系的建立[J]. 农业生物技术学报, 2018, 26(6): 1074-1083. DOI: 10.3969/j.issn.1674-7968.2018.06.018.

    ZHANG C, SHI NN, GAO JB, et al. Establishment of knock-in loxp-modified hCD55 gene fibroblast cell line with porcine (Sus scrofa) Rosa26 locus[J]. J Agric Biotechnol, 2018, 26(6): 1074-1083. DOI: 10.3969/j.issn.1674-7968.2018.06.018.
    [35]
    谢雨宣, 唐红梅, 李欣, 等. GGTA1基因敲除猪胰岛细胞移植到Ⅰ型糖尿病猕猴3例报道[J]. 中国普外基础与临床杂志, 2021, 28(5): 561-565. DOI: 10.7507/1007-9424.202104047.

    XIE YX, TANG HM, LI X, et al. Report of 3 cases of transplantation of GGTA1 gene knockout porcine islet cells into type Ⅰ diabetic macaques[J]. Chin J Bases Clin Gen Surg, 2021, 28(5): 561-565. DOI: 10.7507/1007-9424.202104047.
    [36]
    BRANDHORST H, JOHNSON PR, BRANDHORST D. Pancreatic islets: methods for isolation and purification of juvenile and adult pig islets[J]. Adv Exp Med Biol, 2016, 938: 35-55. DOI: 10.1007/978-3-319-39824-2_4.
    [37]
    BOTTINO R, BALAMURUGAN AN, SMETANKA C, et al. Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies[J]. Xenotransplantation, 2007, 14(1): 74-82. DOI: 10.1111/j.1399-3089.2006.00374.x.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (351) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return