Volume 10 Issue 3
May  2019
Turn off MathJax
Article Contents
Ming Yingzi, Richard M. Kream, George B. Stefano, et al. Potential regulation of glycerol kinase in post transplantation diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 336-338. doi: 10.3969/j.issn.1674-7445.2019.03.020
Citation: Ming Yingzi, Richard M. Kream, George B. Stefano, et al. Potential regulation of glycerol kinase in post transplantation diabetes mellitus[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 336-338. doi: 10.3969/j.issn.1674-7445.2019.03.020

Potential regulation of glycerol kinase in post transplantation diabetes mellitus

doi: 10.3969/j.issn.1674-7445.2019.03.020
  • Received Date: 2019-01-05
    Available Online: 2021-01-19
  • Publish Date: 2019-05-15
  • loading
  • [1]
    WISSING KM, ABRAMOWICZ D, WEEKERS L, et al. Prospective randomized study of conversion from tacrolimus to cyclosporine A to improve glucose metabolism in patients with posttransplant diabetes mellitus after renal transplantation[J]. Am J Transplant, 2018, 18(7):1726-1734. DOI: 10.1111/ajt.14665.
    [2]
    GUPTA S, POLLACK T, FULKERSON C, et al. Hyperglycemia in the posttransplant period: NODAT vs posttransplant diabetes mellitus[J]. J Endocr Soc, 2018, 2(11):1314-1319. DOI: 10.1210/js.2018-00227.
    [3]
    ZELADA H, VANWAGNER LB, POLLACK T, et al. Development of a predictive model for hyperglycemia in nondiabetic recipients after liver transplantation[J]. Transplant Direct, 2018, 4(10):e393. DOI: 10.1097/TXD.0000000000000830.
    [4]
    KE QH, HUANG HT, LING Q, et al. New-onset hyperglycemia immediately after liver transplantation: a national survey from China Liver Transplant Registry[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(4):310-315. DOI: 10.1016/j.hbpd.2018.08.005.
    [5]
    LIU FC, LIN JR, CHEN HP, et al. Prevalence, predictive factors, and survival outcome of new-onset diabetes after liver transplantation: a population-based cohort study[J]. Medicine (Baltimore), 2016, 95(25):e3829. DOI: 10.1097/MD.0000000000003829.
    [6]
    ANDRADE AR, BITTENCOURT PL, CODES L, et al. New onset diabetes and non-alcoholic fatty liver disease after liver transplantation[J]. Ann Hepatol, 2017, 16(6):932-940. DOI: 10.5604/01.3001.0010.5285.
    [7]
    TINIAKOS DG, VOS MB, BRUNT EM. Nonalcoholic fatty liver disease: pathology and pathogenesis[J]. Annu Rev Pathol, 2010, 5:145-171. DOI: 10.1146/annurev-pathol-121808-102132.
    [8]
    GOLABI P, BUSH H, STEPANOVA M, et al. Liver transplantation (LT) for cryptogenic cirrhosis (CC) and nonalcoholic steatohepatitis (NASH) cirrhosis: data from the Scientific Registry of Transplant Recipients (SRTR): 1994 to 2016[J]. Medicine (Baltimore), 2018, 97(31):e11518. DOI: 10.1097/MD.0000000000011518.
    [9]
    MIKOLASEVIC I, FILIPEC-KANIZAJ T, MIJIC M, et al. Nonalcoholic fatty liver disease and liver transplantation - where do we stand?[J]. World J Gastroenterol, 2018, 24(14):1491-1506. DOI: 10.3748/wjg.v24.i14.1491.
    [10]
    RAHIB L, SRIRAM G, HARADA MK, et al. Transcriptomic and network component analysis of glycerol kinase in skeletal muscle using a mouse model of glycerol kinase deficiency[J]. Mol Genet Metab, 2009, 96(3):106-112. DOI: 10.1016/j.ymgme.2008.11.163.
    [11]
    CADOUDAL T, BLOUIN JM, COLLINET M, et al. Acute and selective regulation of glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase in adipose tissue by thiazolidinediones in type 2 diabetes[J]. Diabetologia, 2007, 50(3):666-675. doi: 10.1007/s00125-006-0560-5
    [12]
    CADOUDAL T, FOUQUE F, BENELLI C, et al. Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes[J]. Med Sci (Paris), 2008, 24(4):407-413. DOI: 10.1051/medsci/2008244407.
    [13]
    CADOUDAL T, LEROYER S, REIS AF, et al. Proposed involvement of adipocyte glyceroneogenesis and phosphoenolpyruvate carboxykinase in the metabolic syndrome[J]. Biochimie, 2005, 87(1):27-32. doi: 10.1016/j.biochi.2004.12.005
    [14]
    HANSON RW, RESHEF L. Glyceroneogenesis revisited[J]. Biochimie, 2003, 85(12):1199-1205. doi: 10.1016/j.biochi.2003.10.022
    [15]
    BEALE EG, HAMMER RE, ANTOINE B, et al. Disregulated glyceroneogenesis: PCK1 as a candidate diabetes and obesity gene[J]. Trends Endocrinol Metab, 2004, 15(3):129-135. doi: 10.1016/j.tem.2004.02.006
    [16]
    BAJAJ M, SURAAMORNKUL S, ROMANELLI A, et al. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-CoAs and insulin action in type 2 diabetic patients[J]. Diabetes, 2005, 54(11):3148-3153. doi: 10.2337/diabetes.54.11.3148
    [17]
    HAMMOND LE, NESCHEN S, ROMANELLI AJ, et al. Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential in liver for the metabolism of excess acyl-CoAs[J]. J Biol Chem, 2005, 280(27):25629-25636. doi: 10.1074/jbc.M503181200
    [18]
    WENDEL AA, LEWIN TM, COLEMAN RA. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis[J]. Biochim Biophys Acta, 2009, 1791(6):501-506. DOI: 10.1016/j.bbalip.2008.10.010.
    [19]
    STEFANO GB, FINE R, KREAM RM. Microbiome and health: ramifications of intelligent deception[J]. Med Sci Monit, 2018, 24:2060-2062. doi: 10.12659/MSM.910248
    [20]
    STEFANO GB, PILONIS N, PTACEK R, et al. Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders[J]. Bioc Cell Mol Neurobiol, 2018, 38(6):1197-1206. DOI: 10.1007/s10571-018-0589-2.
    [21]
    MILLER C, WANG L, OSTERGAARD E, et al. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion[J]. Biochim Biophys Acta, 2011, 1812(5):625-629. DOI: 10.1016/j.bbadis.2011.01.013.
    [22]
    CAPUTI V, MARSILIO I, FILPA V, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice[J]. Br J Pharmacol, 2017, 174(20):3623-3639. DOI: 10.1111/bph.13965.
    [23]
    MING Y, STEFANO GB, KREAM RM, et al. Anti-diabetogenic properties of mineralocorticoid receptor antagonists: implications for enhanced safety and efficacy of post-transplantation pharmacotherapies [J]. Med Sci Monit, 2019, 25:1102-1104. doi: 10.12659/MSM.914340
    [24]
    罗招凡, 李芳萍, 程桦.抵抗素介导AMPK信号通路对HepG2细胞脂质代谢的影响[J].实用医学杂志, 2017, 33(11):1743-1747. DOI: 10.3969/j.issn.1006-5725.2017.11.007.

    LUO ZF, LI FP, CHENG Y. The effect of the recombinant human resistin on lipid metabolism by AMPK pathway in HepG2 cells[J]. J Prac Med, 2017, 33(11):1743-1747. DOI: 10.3969/j.issn.1006-5725.2017.11.007.
    [25]
    JAHANSOUZ C, STALEY C, KIZY S, et al. Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy[J]. Ann Surg, 2018. DOI: 10.1097/SLA.0000000000002729 [Epubahead of print].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return