Volume 8 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

doi: 10.3969/j.issn.1674-7445.2017.01.004
  • Received Date: 2016-12-20
    Available Online: 2021-01-19
  • Publish Date: 2017-01-15
  • loading
  • [1]
    Baldwin WM 3rd, Valujskikh A, Fairchild RL. Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts[J]. Curr Opin Organ Transplant, 2016, 21(1):7-14. DOI: 10.1097/MOT.0000000000000262.
    [2]
    Becker LE, Morath C, Suesal C. Immune mechanisms of acute and chronic rejection[J]. Clin Biochem, 2016, 49(4/5):320-323. DOI: 10.1016/j.clinbiochem.2016.02.001.
    [3]
    Zhuang Q, Liu Q, Divito SJ, et al. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection[J]. Nat Commun, 2016, 7:12623. DOI: 10.1038/ncomms12623.
    [4]
    Gorbacheva V, Fan R, Fairchild RL, et al. Memory CD4 T cells induce antibody-mediated rejection of renal allografts[J]. J Am Soc Nephrol, 2016, 27(11):3299-3307. doi: 10.1681/ASN.2015080848
    [5]
    Dean PG, Griffin MD. Bad. emory: CD4 T cell presensitization fosters antibody-mediated kidney transplant rejection[J]. J Am Soc Nephrol, 2016, 27 (11):3231-3233.
    [6]
    Legris T, Picard C, Todorova D, et al. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies[J]. Front Immunol, 2016, 7:288. DOI: 10.3389/fimmu.2016.00288.
    [7]
    Kohei N, Tanaka T, Tanabe K, et al. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts[J]. Kidney Int, 2016, 89(6):1293-1306. DOI: 10.1016/j.kint.2016.02.030.
    [8]
    Lin CM, Plenter RJ, Coulombe M, et al. Interferon gamma and contact-dependent cytotoxicity are each rate limiting for natural killer cell-mediated antibody-dependent chronic rejection[J]. Am J Transplant, 2016, 16(11):3121-3130. DOI: 10.1111/ajt.13865.
    [9]
    Levine MH, Wang Z, Xiao H, et al. Targeting Sirtuin-1 prolongs murine renal allograft survival and function[J]. Kidney Int, 2016, 89(5):1016-1026. DOI: 10.1016/j.kint.2015.12.051.
    [10]
    Fairchild RL. Juicing Tregs in situ to improve kidney allograft outcomes[J]. Kidney Int, 2016, 89(5):976-978. DOI: 10.1016/j.kint.2016.01.020.
    [11]
    Saha A, O'Connor RS, Thangavelu G, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality[J]. J Clin Invest, 2016, 126(7):2642-2660. DOI: 10.1172/JCI85796.
    [12]
    Chesneau M, Michel L, Dugast E, et al. Tolerant kidney transplant patients produce B cells with regulatory properties[J]. J Am Soc Nephrol, 2015, 26(10):2588-2598. DOI: 10.1681/ASN.2014040404.
    [13]
    Strober S. Use of hematopoietic cell transplants to achieve tolerance inpatients with solid organ transplants[J]. Blood, 2016, 127(12):1539-1543. DOI: 10.1182/blood-2015-12-685107.
    [14]
    Hotta K, Aoyama A, Oura T, et al. Induced regulatory T cells in allograft tolerance via transient mixed chimerism[J]. JCI Insight, 2016, 1(10).
    [15]
    Hu M, Wang YM, Wang Y, et al. Regulatory T cells in kidney disease and transplantation[J]. Kidney Int, 2016, 90(3):502-514. DOI: 10.1016/j.kint.2016.03.022.
    [16]
    Petrelli A, Tresoldi E, Mfarrej BG, et al. Generation of donor-specific T regulatory type 1 cells from patients on dialysis for cell therapy after kidney transplantation[J]. Transplantation, 2015, 99(8):1582-1589. DOI: 10.1097/TP.0000000000000751.
    [17]
    van der Net JB, Bushell A, Wood KJ, et al. Regulatory T cells: first steps of clinical application in solid organ transplantation[J]. Transpl Int, 2016, 29(1):3-11. DOI: 10.1111/tri.12608.
    [18]
    Bushell AR, van der Net J, Game DS, et al. The UK ONE Study trial:satety and feasibility of Treg therapy in renal transplantation[J]. Transplantation, 2016, 100(7S):S120. DOI: 10.1111/tri.12608.
    [19]
    MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor[J]. J Clin Invest, 2016, 126(4):1413-1424. DOI: 10.1172/JCI82771.
    [20]
    Edinger M. Driving allotolerance: CAR-expressing Tregs for tolerance induction in organ and stem cell transplantation[J]. J Clin Invest, 2016, 126(4):1248-1250. DOI: 10.1172/JCI86827.
    [21]
    Bézie S, Picarda E, Ossart J, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance[J]. J Clin Invest, 2015, 125(10):3952-3964. DOI: 10.1172/JCI81227.
    [22]
    Kim JI, Turka LA. Transplant tolerance: a new role for IL-34[J]. J Clin Invest, 2015, 125(10):3751-3753. DOI: 10.1172/JCI84010.
    [23]
    Gonzalez-Martin A, Adams BD, Lai M, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity[J]. Nat Immunol, 2016, 17(4):433-440. DOI: 10.1038/ni.3385.
    [24]
    Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ?[J]. Semin Immunol, 2016, 28(3):250-259. DOI: 10.1016/j.smim.2016.04.007.
    [25]
    Aufhauser DD Jr, Wang Z, Murken DR, et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes[J]. J Clin Invest, 2016, 126(5):1968-1977. DOI: 10.1172/JCI84712.
    [26]
    Noel S, Desai NM, Hamad AR, et al. Sex and the single transplanted kidney[J]. J Clin Invest, 2016, 126(5):1643-1645. DOI: 10.1172/JCI87428.
    [27]
    Wyatt CM, Coates PT, Reeves WB. Of mice and women: do sex-dependent responses to ischemia-reperfusion injury in rodents have implications for delayed graft function in humans?[J]. Kidney Int, 2016, 90(1):10-13. DOI: 10.1016/j.kint.2016.05.008.
    [28]
    Hosszu A, Antal Z, Lenart L, et al. σ1-receptor agonism protects against renal ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2016, DOI: 10.1681/ASN.2015070772 [Epub ahead of print].
    [29]
    Zhang J, Han C, Dai H, et al. Hypoxia-inducible factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury[J]. J Am Soc Nephrol, 2016, 27(1):92-106. DOI: 10.1681/ASN.2014121248.
    [30]
    Amrouche L, Desbuissons G, Rabant M, et al. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action[J]. J Am Soc Nephrol, 2016, DOI:10.1681/ASN.2016010045 [Epub ahead of print].
    [31]
    Rogers NM, Zhang ZJ, Wang JJ, et al. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion[J]. Kidney Int, 2016, 90(2):334-347. DOI: 10.1016/j.kint.2016.03.034.
    [32]
    Karim AS, Reese SR, Wilson NA, et al. Nox2 is a mediator of ischemia reperfusion injury[J]. Am J Transplant, 2015, 15(11): 2888-2899. DOI: 10.1111/ajt.13368.
    [33]
    Farrar CA, Zhou W, Sacks SH. Role of the lectin complement pathway in kidney transplantation[J]. Immunobiology, 2016, 221(10):1068-1072. DOI: 10.1016/j.imbio.2016.05.004.
    [34]
    Qin L, Li G, Kirkiles-Smith N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, DOI: 10.1111/ajt.13834 [Epub ahead of print].
    [35]
    Yu ZX, Qi S, Lasaro MA, et al. Targeting complement pathways during cold ischemia and reperfusion prevents delayed graft function[J]. Am J Transplant, 2016, 16(9):2589-2597. DOI: 10.1111/ajt.13797.
    [36]
    Castellano G, Intini A, Stasi A, et al. Complement modulation of anti-aging factor Klotho in ischemia/reperfusion injury and delayed graft function[J]. Am J Transplant, 2016, 16(1):325-333. DOI: 10.1111/ajt.13415.
    [37]
    Allen MB, Reese PP. Transforming living kidney donation with a comprehensive strategy[J]. PLoS Med, 2016, 13(2):e1001948. DOI: 10.1371/journal.pmed.1001948.
    [38]
    Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses[J]. Clin Microbiol Rev, 2012, 25(2):318-343. DOI: 10.1128/CMR.05011-11.
    [39]
    Doudna JA, Charpentier E. Genome editing. the new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. DOI: 10.1126/science.1258096.
    [40]
    Yang L, Güell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264):1101-1104. DOI: 10.1126/science.aad1191.
    [41]
    Jarchum I. Getting rid of PERVs[J]. Nat Biotechnol, 2016, 34(1):46. DOI: 10.1038/nbt.3448.
    [42]
    Salomon DR. A CRISPR way to block PERVs--engineering organs for transplantation[J]. N Engl J Med, 2016, 374(11):1089-1091. DOI: 10.1056/NEJMcibr1515623.
    [43]
    Butler JR, Martens GR, Estrada JL, et al. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation[J]. Transgenic Res, 2016, 25(5):751-759. DOI: 10.1007/s11248-016-9958-0.
    [44]
    Kang JT, Cho B, Ryu J, et al. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs[J]. Reprod Biol Endocrinol, 2016, 14(1):74. DOI: 10.1186/s12958-016-0206-5.
    [45]
    Butler JR, Martens GR, Li P, et al. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs[J]. J Surg Res, 2016, 200(2):698-706. DOI: 10.1016/j.jss.2015.08.034.
    [46]
    Baan CC. Basic sciences in development: What changes will we see in transplantation in the next five years?[J]. Transplantation, 2016, DOI: 10.1097/TP.0000000000001518 [Epub ahead of print].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return