Volume 12 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Tian Qianchuan, Wu Changhong, Xu Yanan, et al. Experimental research progress on immunology of organ transplantation in 2020[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 143-154. doi: 10.3969/j.issn.1674-7445.2021.02.004
Citation: Tian Qianchuan, Wu Changhong, Xu Yanan, et al. Experimental research progress on immunology of organ transplantation in 2020[J]. ORGAN TRANSPLANTATION, 2021, 12(2): 143-154. doi: 10.3969/j.issn.1674-7445.2021.02.004

Experimental research progress on immunology of organ transplantation in 2020

doi: 10.3969/j.issn.1674-7445.2021.02.004
More Information
  • Corresponding author: Zhao Yong, E-mail: zhaoy@ioz.ac.cn
  • Received Date: 2021-02-01
    Available Online: 2021-03-19
  • Publish Date: 2021-03-15
  • Despite the rapid development of organ transplantation technique, the long-term survival and functional maintenance of transplant organs still depend on the massive use of immunosuppressants.At present, the rejection and infection after organ transplantation remain the major problem facing transplant surgeons and recipients. The basic research in the field of organ transplantation is still steadily advancing to further explore the basic biological principle of rejection and immune tolerance, resolve multiple pathophysiological questions in the process of clinical organ transplantation and provide basic theoretical basis and clinical intervention guidance for wider and more effective application of organ transplantation.In 2020, researchers have achieved significant progresses on a wide range of basic researches of organ transplantation, such as the fundamental principle of immune response, overcoming transplantation rejection and inducing transplantation immune tolerance, etc.In this article, novel attempts and progresses upon inducing transplantation immune tolerance in 2020 were reviewed from two perspectives including inhibition of immune cell function and suppression of immune signaling pathway, and the main development direction of immunology of organ transplantation in the future was prospected.

     

  • loading
  • [1]
    MORRIS AB, FARLEY CR, PINELLI DF, et al. Signaling through the inhibitory Fc receptor FcγRIIB induces CD8+T cell apoptosis to limit T cell immunity[J]. Immunity, 2020, 52(1): 136-150. DOI: 10.1016/j.immuni.2019.12.006.
    [2]
    MORRIS AB, PINELLI DF, LIU D, et al. Memory T cellmediated rejection is mitigated by FcγRIIB expression on CD8+T cells[J]. Am J Transplant, 2020, 20(8): 2206-2215. DOI: 10.1111/ajt.15837.
    [3]
    HOFMANN BB, KRAPP N, LI Y, et al. N-octanoyldopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-II expression as well as adhesion molecules in IFNγ-stimulated endothelial cells[J]. Sci Rep, 2019, 9(1): 19338. DOI: 10.1038/s41598-019-55983-1.
    [4]
    XIE A, YAN H, FU J, et al. T follicular helper and memory cell responses and the mTOR pathway in murine heart transplantation[J]. J Heart Lung Transplant, 2020, 39(2): 134-144. DOI: 10.1016/j.healun.2019.11.017.
    [5]
    FISHER JD, BALMERT SC, ZHANG W, et al. Treginducing microparticles promote donor-specific tolerance in experimental vascularized composite allotransplantation[J]. Proc Natl Acad Sci U S A, 2019, 116(51): 25784-25789. DOI: 10.1073/pnas.1910701116.
    [6]
    FISHER JD, ZHANG W, BALMERT SC, et al. In situ recruitment of regulatory T cells promotes donor-specific tolerance in vascularized composite allotransplantation[J]. Sci Adv, 2020, 6(11): eaax8429. DOI: 10.1126/sciadv.aax8429.
    [7]
    ZHANG GY, HU M, WATSON D, et al. Indirectly activated Treg allow dominant tolerance to murine skin-grafts across an MHC class I mismatch after a single donor-specific transfusion[J]. Transplantation, 2020, 104(7): 1385-1395. DOI: 10.1097/TP.0000000000003173.
    [8]
    IGLESIAS M, KHALIFIAN S, OH BC, et al. A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts[J]. Am J Transplant, 2020, DOI: 10.1111/ajt.16456[Epub ahead of print].
    [9]
    KAWAI K, UCHIYAMA M, HESTER J, et al. IL-33 drives the production of mouse regulatory T cells with enhanced in vivo suppressive activity in skin transplantation[J]. Am J Transplant, 2020, DOI: 10.1111/ajt.16266[Epub ahead of print].
    [10]
    CHOI JY, ESKANDARI SK, CAI S, et al. Regulatory CD8 T cells that recognize Qa-1 expressed by CD4 T-helper cells inhibit rejection of heart allografts[J]. Proc Natl Acad Sci U S A, 2020, 117(11): 6042-6046. DOI: 10.1073/pnas.1918950117.
    [11]
    XIE CB, JIANG B, QIN L, et al. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells[J]. J Clin Invest, 2020, 130(7): 3437-3452. DOI: 10.1172/JCI135060.
    [12]
    AGARWAL D, ALLMAN D, NAJI A. Novel therapeutic opportunities afforded by plasma cell biology in transplantation[J]. Am J Transplant, 2020, 20(8): 1984-1991. DOI: 10.1111/ajt.15813.
    [13]
    CAVAZZONI CB, SAGE PT. Transplantation tolerance: expanded and selective roles for B cells[J]. Transplantation, 2020, 104(12): 2459-2460. DOI: 10.1097/TP.0000000000003411.
    [14]
    SCHMITZ R, FITCH ZW, SCHRODER PM, et al. B cells in transplant tolerance and rejection: friends or foes?[J]. Transpl Int, 2020, 33(1): 30-40. DOI: 10.1111/tri.13549.
    [15]
    CHONG AS. B cells as antigen-presenting cells in transplantation rejection and tolerance[J]. Cell Immunol, 2020, 349: 104061. DOI: 10.1016/j.cellimm.2020.104061.
    [16]
    MARINO J, GONZALEZ-NOLASCO B, WANG X, et al. Contrasting effects of B cell depletion on CD4+ and CD8+ memory T cell responses generated after transplantation[J]. Am J Transplant, 2020, 20(9): 2551-2558. DOI: 10.1111/ajt.15858.
    [17]
    STEINES L, POTH H, HERRMANN M, et al. B cell activating factor (BAFF) is required for the development of intra-renal tertiary lymphoid organs in experimental kidney transplantation in rats[J]. Int J Mol Sci, 2020, 21(21): 8045. DOI: 10.3390/ijms21218045.
    [18]
    KIMURA S, RICKERT CG, KOJIMA L, et al. Regulatory B cells require antigen recognition for effective allograft tolerance induction[J]. Am J Transplant, 2020, 20(4): 977-987. DOI: 10.1111/ajt.15739.
    [19]
    DANGI A, YU S, LEE FT, et al. Donor apoptotic cellbased therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients[J]. Am J Transplant, 2020, 20(10): 2728-2739. DOI: 10.1111/ajt.15878.
    [20]
    KHIEW SH, JAIN D, CHEN J, et al. Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells[J]. J Clin Invest, 2020, 130(7): 3453-3466. DOI: 10.1172/JCI132814.
    [21]
    GRACA L. The contribution of B cells to transplantation tolerance[J]. J Clin Invest, 2020, 130(7): 3406-3408. DOI: 10.1172/JCI138122.
    [22]
    KOPECKY BJ, FRYE C, TERADA Y, et al. Role of donor macrophages after heart and lung transplantation[J]. Am J Transplant, 2020, 20(5): 1225-1235. DOI: 10.1111/ajt.15751.
    [23]
    AKBARPOUR M, LECUONA E, CHIU SF, et al. Residual endotoxin induces primary graft dysfunction through ischemia/reperfusion-primed alveolar macrophages[J]. J Clin Invest, 2020, 130(8): 4456-4469. DOI: 10.1172/JCI135838.
    [24]
    SMITH RJ JR, NASIRI B, KANN J, et al. Endothelialization of arterial vascular grafts by circulating monocytes[J]. Nat Commun, 2020, 11(1): 1622. DOI: 10.1038/s41467-020-15361-2.
    [25]
    CHU Z, FENG C, SUN C, et al. Primed macrophages gain long-term specific memory to reject allogeneic tissues in mice[J]. Cell Mol Immunol, 2020, DOI: 10.1038/s41423-020-00521-7[Epub ahead of print].
    [26]
    DAI H, LAN P, ZHAO D, et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules[J]. Science, 2020, 368(6495): 1122-1127. DOI: 10.1126/science.aax4040.
    [27]
    HUGHES AD, ZHAO D, DAI H, et al. Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts[J]. J Clin Invest, 2020, 130(1): 287-294. DOI: 10.1172/JCI125773.
    [28]
    WU H, XU Z, WANG Z, et al. Exosomes from dendritic cells with METTL3 gene knockdown prevent immune rejection in a mouse cardiac allograft model[J]. Immunogenetics, 2020, 72(8): 423-430. DOI: 10.1007/s00251-020-01180-8.
    [29]
    OH NA, O'SHEA T, NDISHABANDI DK, et al. Plasmacytoid dendritic cell-driven induction of Treg is strain specific and correlates with spontaneous acceptance of kidney allografts[J]. Transplantation, 2020, 104(1): 39-53. DOI: 10.1097/TP.0000000000002867.
    [30]
    TECCHIO C, CASSATELLA MA. Uncovering the multifaceted roles played by neutrophils in allogeneic hematopoietic stem cell transplantation[J]. Cell Mol Immunol, 2020, DOI: 10.1038/s41423-020-00581-9[Epub ahead of print].
    [31]
    WONG SL, GOVERMAN J, STAUDINGER C, et al. Recombinant human ADAMTS13 treatment and anti-NET strategies enhance skin allograft survival in mice[J]. Am J Transplant, 2020, 20(4): 1162-1169. DOI: 10.1111/ajt.15703.
    [32]
    BROUARD S, MOONEY N. Neutrophils cause a "NET" increase in skin allograft allogenicity[J]. Am J Transplant, 2020, 20(4): 922-923. DOI: 10.1111/ajt.15746.
    [33]
    MALLAVIA B, LIU F, LEFRANÇAIS E, et al. Mitochondrial DNA stimulates TLR9-dependent neutrophil extracellular trap formation in primary graft dysfunction[J]. Am J Respir Cell Mol Biol, 2020, 62(3): 364-372. DOI: 10.1165/rcmb.2019-0140OC.
    [34]
    XU Y, ZHANG Q, ZHAO Y. The functional diversity of neutrophils and clustered polarization of immunity[J]. Cell Mol Immunol, 2020, 17(11): 1212-1214. DOI: 10.1038/s41423-020-0378-y.
    [35]
    OCHANDO J, FAYAD ZA, MADSEN JC, et al. Trained immunity in organ transplantation[J]. Am J Transplant, 2020, 20(1): 10-18. DOI: 10.1111/ajt.15620.
    [36]
    SHAO L, PAN S, ZHANG QP, et al. Emerging role of myeloid-derived suppressor cells in the biology of transplantation tolerance[J]. Transplantation, 2020, 104(3): 467-475. DOI: 10.1097/TP.0000000000002996.
    [37]
    SCALEA JR, LEE YS, DAVILA E, et al. Myeloidderived suppressor cells and their potential application in transplantation[J]. Transplantation, 2018, 102(3): 359-367. DOI: 10.1097/TP.0000000000002022.
    [38]
    LEE YS, ZHANG T, SAXENA V, et al. Myeloidderived suppressor cells expand after transplantation and their augmentation increases graft survival[J]. Am J Transplant, 2020, 20(9): 2343-2355. DOI: 10.1111/ajt.15879.
    [39]
    PENGAM S, DURAND J, USAL C, et al. SIRPα/CD47 axis controls the maintenance of transplant tolerancesustained by myeloid-derived suppressor cells[J]. Am J Transplant, 2019, 19(12): 3263-3275. DOI: 10.1111/ajt.15497.
    [40]
    REN Y, DONG X, ZHAO H, et al. Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis[J]. Am J Transplant, 2021, 21(2): 552-566. DOI: 10.1111/ajt.16291.
    [41]
    CAI S, CHOI JY, BORGES TJ, et al. Donor myeloid derived suppressor cells (MDSCs) prolong allogeneic cardiac graft survival through programming of recipient myeloid cells in vivo[J]. Sci Rep, 2020, 10(1): 14249. DOI: 10.1038/s41598-020-71289-z.
    [42]
    IGLESIAS-ESCUDERO M, SANSEGUNDO-ARRIBAS D, RIQUELME P, et al. Myeloid-derived suppressor cells in kidney transplant recipients and the effect of maintenance immunotherapy[J]. Front Immunol, 2020, 11: 643. DOI: 10.3389/fimmu.2020.00643.
    [43]
    ISKE J, SEYDA M, HEINBOKEL T, et al. Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation[J]. Nat Commun, 2020, 11(1): 4289. DOI: 10.1038/s41467-020-18039-x.
    [44]
    BRÜGGENWIRTH IMA, MARTINS PN. RNA interference therapeutics in organ transplantation: the dawn of a new era[J]. Am J Transplant, 2020, 20(4): 931-941. DOI: 10.1111/ajt.15689.
    [45]
    SU Y, ZHU C, WANG B, et al. Foxo3 in cardiac ischemia reperfusion injury in heart transplantation: a new regulator and target[J]. Am J Transplant, 2020, DOI: 10.1111/ajt.16475[Epub ahead of print].
    [46]
    ZHOU B, MEI F, WU C, et al. Effect of miR-744 on ameliorating heart allograft rejection in Balb/c mice via regulation of TNFRSF4 expression in regulatory T cells[J]. Transplant Proc, 2020, 52(1): 398-405. DOI: 10.1016/j.transproceed.2019.10.014.
    [47]
    ANANDAGODA N, ROBERTS LB, WILLIS JCD, et al. Dominant regulation of long-term allograft survival is mediated by microRNA-142[J]. Am J Transplant, 2020, 20(10): 2715-2727. DOI: 10.1111/ajt.15907.
    [48]
    ZHANG W, CHEN Q, YE Y, et al. AntagomiR-199a enhances the liver protective effect of hypoxiapreconditioned BM-MSCs in a rat model of reduced-size liver transplantation[J]. Transplantation, 2020, 104(1): 61-71. DOI: 10.1097/TP.0000000000002928.
    [49]
    GROENEWEG KE, DUIJS JMGJ, FLORIJN BW, et al. Circulating long noncoding RNA LNC-EPHA6 associates with acute rejection after kidney transplantation[J]. Int J Mol Sci, 2020, 21(16): 5616. DOI: 10.3390/ijms21165616.
    [50]
    LI J, WEI L, HAN Z, et al. Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism[J]. EBioMedicine, 2020, 52: 102600. DOI: 10.1016/j.ebiom.2019.102600.
    [51]
    JONES IKA, ORLOFF S, BURG JM, et al. Blocking the IL-1 receptor reduces cardiac transplant ischemia and reperfusion injury and mitigates CMV-accelerated chronic rejection[J]. Am J Transplant, 2021, 21(1): 44-59. DOI: 10.1111/ajt.16149.
    [52]
    MAI HL, NGUYEN TVH, BRANCHEREAU J, et al. Interleukin-7 receptor blockade by an anti-CD127 monoclonal antibody in nonhuman primate kidney transplantation[J]. Am J Transplant, 2020, 20(1): 101-111. DOI: 10.1111/ajt.15543.
    [53]
    GUO L, LV J, ZHANG J, et al. Elevated serum IL-21 levels are associated with stable immune status in kidney transplant recipients and a mouse model of kidney transplantation[J]. Aging (Albany NY), 2020, 12(18): 18396-18414. DOI: 10.18632/aging.103713.
    [54]
    DE LEUR K, LUK F, VAN DEN BOSCH TPP, et al. The effects of an IL-21 receptor antagonist on the alloimmune response in a humanized mouse skin transplant model[J]. Transplantation, 2019, 103(10): 2065-2074. DOI: 10.1097/TP.0000000000002773.
    [55]
    LI T, ZHANG Z, BARTOLACCI JG, et al. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection[J]. J Clin Invest, 2020, 130(10): 5397-5412. DOI: 10.1172/JCI133008.
    [56]
    STEINES L, POTH H, SCHUSTER A, et al. AntiBAFF treatment interferes with humoral responses in a model of renal transplantation in rats[J]. Transplantation, 2020, 104(1): e16-e22. DOI: 10.1097/TP.0000000000002992.
    [57]
    LEE SJ, KIM HJ, BYUN NR, et al. Donor-specific regulatory T cell-mediated immune tolerance in an intrahepatic murine allogeneic islet transplantation model with short-term anti-CD154 mAb single treatment[J]. Cell Transplant, 2020, 29: 963689720913876. DOI: 10.1177/0963689720913876.
    [58]
    CORONEL MM, MARTIN KE, HUNCKLER MD, et al. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival[J]. Sci Adv, 2020, 6(35): eaba5573. DOI: 10.1126/sciadv.aba5573.
    [59]
    ZHAO X, ZHANG K, DANIEL P, et al. Delayed allogeneic skin graft rejection in CD26-deficient mice[J]. Cell Mol Immunol, 2019, 16(6): 557-567. DOI: 10.1038/s41423-018-0009-z.
    [60]
    PODESTÀ MA, BINDER C, SELLBERG F, et al. Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of alloreactive regulatory T cells in vitro[J]. Am J Transplant, 2020, 20(1): 88-100. DOI: 10.1111/ajt.15533.
    [61]
    HARRISON DK, WALDRIP ZJ, BURDINE L, et al. DNA-PKcs inhibition extends allogeneic skin graft survival[J]. Transplantation, 2021, 105(3): 540-549. DOI: 10.1097/TP.0000000000003442.
    [62]
    NA N, ZHAO D, ZHANG J, et al. Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2020, 5(1): 194. DOI: 10.1038/s41392-020-00232-5.
    [63]
    HEINBOKEL T, QUANTE M, ISKE J, et al. CTLA4-Ig prolongs graft survival specifically in young but not old mice[J]. Am J Transplant, 2021, 21(2): 488-502. DOI: 10.1111/ajt.16218.
    [64]
    YANG Y, NANKIVELL BJ, HUA W, et al. Renal tubular cell binding of β-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys[J]. Am J Transplant, 2021, 21(2): 727-739. DOI: 10.1111/ajt.16287.
    [65]
    BAN Q, QIAO L, XIA H, et al. β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways[J]. Am J Transl Res, 2020, 12(8): 4757-4771. http://www.researchgate.net/publication/344232731_b-catenin_regulates_myocardial_ischemiareperfusion_injury_following_heterotopic_heart_transplantation_in_mice_by_modulating_PTEN_pathways
    [66]
    GOU W, WANG J, SONG L, et al.Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation[J].Am J Transplant, 2020, DOI: 10.1111/ajt.16342[Epub ahead of print].
    [67]
    NAAMANI O, RIFF R, CHAIMOVITZ C, et al.Pharmacological preconditioning with adenosine A1 receptor agonist induces immunosuppression and improves graft survival in novel allogeneic transplantation models[J].Sci Rep, 2020, 10(1): 4464.DOI: 10.1038/s41598-020-60224-x.
    [68]
    FUKUNAGA N, KAWAJIRI H, BADIWALA MV, et al.Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy[J].Am J Transplant, 2020, 20(5): 1262-1271.DOI: 10.1111/ajt.15724.
    [69]
    XU Z, TSAI HI, XIAO Y, et al.Engineering programmed death ligand-1/cytotoxic T-lymphocyte-associated antigen-4 dual-targeting nanovesicles for immunosuppressive therapy in transplantation[J].ACS Nano, 2020, 14(7): 7959-7969.DOI: 10.1021/acsnano.9b09065.
    [70]
    LI C, GUO F, WANG X, et al.Exosome-based targeted RNA delivery for immune tolerance induction in skin transplantation[J].J Biomed Mater Res A, 2020, 108(7): 1493-1500.DOI: 10.1002/jbm.a.36919.
    [71]
    LI C, SUN Z, YUAN F, et al.Mechanism of indoleamine 2, 3-dioxygenase inhibiting cardiac allograft rejection in mice[J].J Cell Mol Med, 2020, 24(6): 3438-3448.DOI: 10.1111/jcmm.15024.
    [72]
    LI C, WANG X, YUAN F, et al.MiR-669b-3p regulates CD4+ T cell function by down-regulating indoleamine-2, 3-dioxygenase[J].Transpl Immunol, 2020, 62:101320.DOI: 10.1016/j.trim.2020.101320.
    [73]
    GIELIS EM, LEDEGANCK KJ, DENDOOVEN A, et al.The use of plasma donor-derived, cell-free DNA to monitor acute rejection after kidney transplantation[J].Nephrol Dial Transplant, 2020, 35(4): 714-721.DOI: 10.1093/ndt/gfz091.
    [74]
    XIU MX, LIU ZT, TANG J.Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies[J].Int Immunopharmacol, 2020, 87:106827.DOI: 10.1016/j.intimp.2020.106827
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (976) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return