留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

维生素D3在移植免疫中的应用进展

夏征, 周林. 维生素D3在移植免疫中的应用进展[J]. 器官移植, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020
引用本文: 夏征, 周林. 维生素D3在移植免疫中的应用进展[J]. 器官移植, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020
Xia Zheng, Zhou Lin. Application progress in the role of vitamin D3 in transplantation immunity[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020
Citation: Xia Zheng, Zhou Lin. Application progress in the role of vitamin D3 in transplantation immunity[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 313-318. doi: 10.3969/j.issn.1674-7445.2023.02.020

维生素D3在移植免疫中的应用进展

doi: 10.3969/j.issn.1674-7445.2023.02.020
基金项目: 

北京市自然科学基金 7212042

详细信息
    作者简介:
    通讯作者:

    周林,博士,副主任医师,研究方向为移植免疫耐受临床与基础研究,E-mail: commander_fmmu@126.com

  • 中图分类号: R617, R392.4

Application progress in the role of vitamin D3 in transplantation immunity

More Information
  • 摘要: 维生素D3是维持人体正常生理功能的重要维生素,其代谢物及类似物具有强大的抗炎活性。维生素D3可在人体内活化转化为类固醇激素1α,25-二羟维生素D3,而1α,25-二羟维生素D3可以激活转录因子维生素D受体,参与细胞代谢的调控,发挥免疫调节作用,这对维持机体生理健康至关重要。目前,越来越多的研究认为1α,25-二羟维生素D3在器官移植免疫调节及耐受中具有重要作用。因此,本文就1α,25-二羟维生素D3的概述及生理作用、维生素D3的免疫调节作用及维生素D3在临床器官移植中的应用进行综述,总结维生素D3在诱导移植免疫耐受中的应用价值,以期为促进维生素D3在移植免疫中的应用提供参考。

     

  • [1] EL-SHARKAWY A, MALKI A. Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications[J]. Molecules, 2020, 25(14): 3219. DOI: 10.3390/molecules25143219.
    [2] 罗玲, 廖献花, 钟碧慧. 维生素D缺乏与代谢相关脂肪性肝病的关系[J]. 临床肝胆病杂志, 2022, 38(7): 1641-1645. DOI: 10.3969/j.issn.1001-5256.2022.07.034.

    LUO L, LIAO XH, ZHONG BH. Research advances in vitamin D deficiency and metabolic associated fatty liver disease[J]. J Clin Hepatol, 2022, 38(7): 1641-1645. DOI: 10.3969/j.issn.1001-5256.2022.07.034.
    [3] BILANI N, ELSON L, SZUCHAN C, et al. Newly-identified pathways relating vitamin D to carcinogenesis: a review[J]. In Vivo, 2021, 35(3): 1345-1354. DOI: 10.21873/invivo.12387.
    [4] AL-GHAFARI AB, BALAMASH KS, AL DOGHAITHER HA. Serum vitamin D receptor (VDR) levels as a potential diagnostic marker for colorectal cancer[J]. Saudi J Biol Sci, 2020, 27(3): 827-832. DOI: 10.1016/j.sjbs.2020.01.006.
    [5] 潘丽莎, 华美云, 徐思雅, 等. 维生素D对急性肝衰竭小鼠肝脏的保护作用[J]. 中华肝脏病杂志, 2021, 29(6): 545-550. DOI: 10.3760/cma.j.cn501113-20200701-00360.

    PAN LS, HUA MY, XU SY, et al. Protective effect of vitamin D in mice with acute liver failure[J]. Chin J Hepatol, 2021, 29(6): 545-550. DOI: 10.3760/cma.j.cn501113-20200701-00360.
    [6] MAESTRO MA, MOLNÁR F, CARLBERG C. Vitamin D and its synthetic analogs[J]. J Med Chem, 2019, 62(15): 6854-6875. DOI: 10.1021/acs.jmedchem.9b00208.
    [7] RIZZOLI R. Vitamin D supplementation: upper limit for safety revisited?[J]. Aging Clin Exp Res, 2021, 33(1): 19-24. DOI: 10.1007/s40520-020-01678-x.
    [8] SAPONARO F, SABA A, ZUCCHI R. An update on vitamin D metabolism[J]. Int J Mol Sci, 2020, 21(18): 6573. DOI: 10.3390/ijms21186573.
    [9] BELORUSOVA AY, ROCHEL N. Structural studies of vitamin D nuclear receptor ligand-binding properties[J]. Vitam Horm, 2016, 100: 83-116. DOI: 10.1016/bs.vh.2015.10.003.
    [10] NAGATA A, AKAGI Y, ASANO L, et al. Synthetic chemical probes that dissect vitamin D activities[J]. ACS Chem Biol, 2019, 14(12): 2851-2858. DOI: 10.1021/acschembio.9b00718.
    [11] ŠVAJGER U, ROŽMAN PJ. Synergistic effects of interferon-γ and vitamin D3 signaling in induction of ILT-3highPDL-1high tolerogenic dendritic cells[J]. Front Immunol, 2019, 10: 2627. DOI: 10.3389/fimmu.2019.02627.
    [12] CATALÀ-MOLL F, FERRETÉ-BONASTRE AG, GODOY-TENA G, et al. Vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis[J]. Cell Rep, 2022, 38(3): 110244. DOI: 10.1016/j.celrep.2021.110244.
    [13] ZHOU L, LI H, ZHANG XX, et al. Rapamycin treated tol-dendritic cells derived from BM-MSCs reversed graft rejection in a rat liver transplantation model by inducing CD8+CD45RC-Treg[J]. Mol Immunol, 2021, 137: 11-19. DOI: 10.1016/j.molimm.2021.03.018.
    [14] CHAUSS D, FREIWALD T, MCGREGOR R, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of Th1 cells[J]. Nat Immunol, 2022, 23(1): 62-74. DOI: 10.1038/s41590-021-01080-3.
    [15] SAUL L, MAIR I, IVENS A, et al. 1,25-Dihydroxyvitamin D3 restrains CD4+ T cell priming ability of CD11c+ dendritic cells by upregulating expression of CD31[J]. Front Immunol, 2019, 10: 600. DOI: 10.3389/fimmu.2019.00600.
    [16] 王光川, LI XC. 天然免疫细胞的获得性免疫属性及其在移植排斥中的作用[J]. 中华消化外科杂志, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.

    WANG GC, LI XC. Features of acquired immune properties in innate immune cells and its roles in transplant rejection[J]. Chin J Dig Surg, 2022, 21(8): 1044-1049. DOI: 10.3760/cma.j.cn115610-20220628-00376.
    [17] L BISHOP E, ISMAILOVA A, DIMELOE S, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory[J]. JBMR Plus, 2020, 5(1): e10405. DOI: 10.1002/jbm4.10405.
    [18] LOPEZ DV, AL-JABERI FAH, WOETMANN A, et al. Macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses[J]. Front Immunol, 2021, 12: 722806. DOI: 10.3389/fimmu.2021.722806.
    [19] JOGDAND GM, MOHANTY S, DEVADAS S. Regulators of Tfh cell differentiation[J]. Front Immunol, 2016, 7: 520. DOI: 10.3389/fimmu.2016.00520.
    [20] KANG SW, KIM SH, LEE N, et al. 1,25-Dihyroxyvitamin D3 promotes Foxp3 expression via binding to vitamin D response elements in its conserved noncoding sequence region[J]. J Immunol, 2012, 188(11): 5276-5282. DOI: 10.4049/jimmunol.1101211.
    [21] GELDMEYER-HILT K, HEINE G, HARTMANN B, et al. 1,25-Dihydroxyvitamin D3 impairs NF-κB activation in human naïve B cells[J]. Biochem Biophys Res Commun, 2011, 407(4): 699-702. DOI: 10.1016/j.bbrc.2011.03.078.
    [22] PALOMARES O, ELEWAUT D, IRVING PM, et al. Regulatory T cells and immunoglobulin E: a new therapeutic link for autoimmunity?[J]. Allergy, 2022, 77(11): 3293-3308. DOI: 10.1111/all.15449.
    [23] TSE AK, WAN CK, SHEN XL, et al. 1,25-Dihydroxyvitamin D3 induces biphasic NF-kappaB responses during HL-60 leukemia cells differentiation through protein induction and PI3K/Akt-dependent phosphorylation/degradation of IkappaB[J]. Exp Cell Res, 2007, 313(8): 1722-1734. DOI: 10.1016/j.yexcr.2007.02.022.
    [24] TREPTOW S, GRÜN J, SCHOLZ J, et al. 9-Cis retinoic acid and 1.25-dihydroxyvitamin D3 drive differentiation into IgA+ secreting plasmablasts in human naïve B cells[J]. Eur J Immunol, 2021, 51(1): 125-137. DOI: 10.1002/eji.202048557.
    [25] MARTENS PJ, GYSEMANS C, VERSTUYF A, et al. Vitamin D's effect on immune function[J]. Nutrients, 2020, 12(5): 1248. DOI: 10.3390/nu12051248.
    [26] CARLBERG C. Molecular endocrinology of vitamin D on the epigenome level[J]. Mol Cell Endocrinol, 2017, 453: 14-21. DOI: 10.1016/j.mce.2017.03.016.
    [27] NEME A, SEUTER S, MALINEN M, et al. In vivo transcriptome changes of human white blood cells in response to vitamin D[J]. J Steroid Biochem Mol Biol, 2019, 188: 71-76. DOI: 10.1016/j.jsbmb.2018.11.019.
    [28] STOFFELS K, OVERBERGH L, BOUILLON R, et al. Immune regulation of 1alpha-hydroxylase in murine peritoneal macrophages: unravelling the IFNgamma pathway[J]. J Steroid Biochem Mol Biol, 2007, 103(3/4/5): 567-571. DOI: 10.1016/j.jsbmb.2006.12.091.
    [29] CHEN Y, LIU W, SUN T, et al. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages[J]. J Immunol, 2013, 190(7): 3687-3695. DOI: 10.4049/jimmunol.1203273.
    [30] KANIKARLA-MARIE P, JAIN SK. 1, 25(OH)2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis)[J]. J Steroid Biochem Mol Biol, 2016, 159: 94-101. DOI: 10.1016/j.jsbmb.2016.03.002.
    [31] CARLBERG C. Vitamin D signaling in the context of innate immunity: focus on human monocytes[J]. Front Immunol, 2019, 10: 2211. DOI: 10.3389/fimmu.2019.02211.
    [32] MARTUCCI G, VOLPES R, PANARELLO G, et al. Vitamin D levels in liver transplantation recipients and early postoperative outcomes: prospective observational DLiverX study[J]. Clin Nutr, 2021, 40(4): 2355-2363. DOI: 10.1016/j.clnu.2020.10.027.
    [33] WANG X, WANG H, SHEN B, et al. 1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10[J]. Transl Res, 2016, 178: 54-62. DOI: 10.1016/j.trsl.2016.07.006.
    [34] PRYTUŁA A, WALLE JV, VAN VLIERBERGHE H, et al. Factors associated with 1,25-dihydroxyvitamin D3 concentrations in liver transplant recipients: a prospective observational longitudinal study[J]. Endocrine, 2016, 52(1): 93-102. DOI: 10.1007/s12020-015-0757-9.
    [35] CHIU KW, GOTO S, NAKANO T, et al. Genetic polymorphisms of the hepatic pathways of fatty liver disease after living donor liver transplantation[J]. Liver Int, 2018, 38(12): 2287-2293. DOI: 10.1111/liv.13920.
    [36] THORSEN IS, BLESKESTAD IH, ÅSBERG A, et al. Vitamin D as a risk factor for patient survival after kidney transplantation: a prospective observational cohort study[J]. Clin Transplant, 2019, 33(5): e13517. DOI: 10.1111/ctr.13517.
    [37] ZUNUNI VAHED S, AHMADIAN E, FOROUGHI P, et al. Vitamin D receptor and vitamin D binding protein gene polymorphisms are associated with renal allograft outcome[J]. Nutrients, 2021, 13(4): 1101. DOI: 10.3390/nu13041101.
    [38] KORUCU B, TÜKÜN A, HELVACI Ö, et al. Vitamin D receptor polymorphisms and bone health after kidney transplantation[J]. Turk J Med Sci, 2021, 51(2): 802-812. DOI: 10.3906/sag-1911-156.
    [39] MOLINARI P, ALFIERI CM, MATTINZOLI D, et al. Bone and mineral disorder in renal transplant patients: overview of pathology, clinical, and therapeutic aspects[J]. Front Med (Lausanne), 2022, 9: 821884. DOI: 10.3389/fmed.2022.821884.
    [40] QUACH K, ABDELMASIH M, CHEN PX, et al. Vitamin D levels and the risk of posttransplant diabetes mellitus after kidney transplantation[J]. Prog Transplant, 2021, 31(2): 133-141. DOI: 10.1177/15269248211002796.
    [41] XI Y, MA Y, XIE B, et al. Vitamin D3 combined with antibody agents suppresses alloreactive memory T-cell responses to induce heart allograft long-term survival[J]. Transpl Immunol, 2021, 66: 101374. DOI: 10.1016/j.trim.2021.101374.
    [42] SONG J, CHEN X, CHENG L, et al. Vitamin D receptor restricts T helper 2-biased inflammation in the heart[J]. Cardiovasc Res, 2018, 114(6): 870-879. DOI: 10.1093/cvr/cvy034.
    [43] PRZYBYŁOWSKI P, WASILEWSKI G, KOC-ŻÓRAWSKA E, et al. Vitamin D concentration in patients after heart and kidney transplantation[J]. Transplant Proc, 2018, 50(7): 2100-2104. DOI: 10.1016/j.transproceed.2018.02.171.
  • 加载中
图(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  61
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回