留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢分子及其制品对肺移植保护作用的研究进展

刘孟根, 刘沛直, 唐宏涛, 等. 氢分子及其制品对肺移植保护作用的研究进展[J]. 器官移植, 2023, 14(2): 300-304. doi: 10.3969/j.issn.1674-7445.2023.02.018
引用本文: 刘孟根, 刘沛直, 唐宏涛, 等. 氢分子及其制品对肺移植保护作用的研究进展[J]. 器官移植, 2023, 14(2): 300-304. doi: 10.3969/j.issn.1674-7445.2023.02.018
Liu Menggen, Liu Peizhi, Tang Hongtao, et al. Research progress on protective effect of hydrogen molecule and its products on lung transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 300-304. doi: 10.3969/j.issn.1674-7445.2023.02.018
Citation: Liu Menggen, Liu Peizhi, Tang Hongtao, et al. Research progress on protective effect of hydrogen molecule and its products on lung transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 300-304. doi: 10.3969/j.issn.1674-7445.2023.02.018

氢分子及其制品对肺移植保护作用的研究进展

doi: 10.3969/j.issn.1674-7445.2023.02.018
基金项目: 

四川省科技厅重点研发项目 23ZDYF2875

国家级大学生创新创业计划训练项目 202210634058

详细信息
    作者简介:
    通讯作者:

    田东,博士,副教授,研究方向为肺移植基础与临床研究,E-mail: 22tiandong@163.com

  • 中图分类号: R617, R563

Research progress on protective effect of hydrogen molecule and its products on lung transplantation

More Information
  • 摘要: 肺移植术后缺血-再灌注损伤是导致原发性移植物功能障碍的主要原因,进而会降低肺移植受者的移植肺功能和总体生存率。氢分子作为一种生理调节性分子,具有抗炎、改善氧化应激、减轻直接细胞损伤和缓解上皮细胞水肿等作用。近年来,越来越多的研究证明氢分子及其制品(主要是氢气和富氢溶液)可以显著改善肺移植术后缺血-再灌注损伤等并发症。本文就氢分子及其制品在肺移植中的保护作用及具体机制进行回顾总结,旨在为氢分子及其制品作为一种新的肺移植相关并发症治疗手段提供理论依据,进而改善肺移植受者的总体预后及生活质量。

     

  • [1] TALAIE T, DICHIACCHIO L, PRASAD NK, et al. Ischemia-reperfusion injury in the transplanted lung: a literature review[J]. Transplant Direct, 2021, 7(2): e652. DOI: 10.1097/TXD.0000000000001104.
    [2] VLASTOS D, ZEINAH M, NINKOVIC-HALL G, et al. The effects of ischaemic conditioning on lung ischaemia-reperfusion injury[J]. Respir Res, 2022, 23(1): 351. DOI: 10.1186/s12931-022-02288-z.
    [3] FORGIE KA, FIALKA N, FREED DH, et al. Lung transplantation, pulmonary endothelial inflammation, and ex-situ lung perfusion: a review[J]. Cells, 2021, 10(6): 1417. DOI: 10.3390/cells10061417.
    [4] DELAURA IF, GAO Q, ANWAR IJ, et al. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery[J]. Front Immunol, 2022, 13: 1000172. DOI: 10.3389/fimmu.2022.1000172.
    [5] HE J, KHAN UZ, QING L, et al. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: clinical experience and experimental implications[J]. Front Immunol, 2022, 13: 998952. DOI: 10.3389/fimmu.2022.998952.
    [6] VAN SLAMBROUCK J, VAN RAEMDONCK D, VOS R, et al. A focused review on primary graft dysfunction after clinical lung transplantation: a multilevel syndrome[J]. Cells, 2022, 11(4): 745. DOI: 10.3390/cells11040745.
    [7] CHEN-YOSHIKAWA TF. Ischemia-reperfusion injury in lung transplantation[J]. Cells, 2021, 10(6): 1333. DOI: 10.3390/cells10061333.
    [8] D'OVIDIO F, FLOROS J, ARAMINI B, et al. Donor surfactant protein A2 polymorphism and lung transplant survival[J]. Eur Respir J, 2020, 55(3): 1900618. DOI: 10.1183/13993003.00618-2019.
    [9] OHSAWA I, ISHIKAWA M, TAKAHASHI K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6): 688-694. DOI: 10.1038/nm1577.
    [10] HIRANO M, SUGAI K, FUJISAWA M, et al. Pharmacokinetics of hydrogen administered intraperitoneally as hydrogen-rich saline and its effect on ischemic neuronal cell death in the brain in gerbils[J]. PLoS One, 2022, 17(12): e0279410. DOI: 10.1371/journal.pone.0279410.
    [11] ROHOVYI YY, TSITRIN VY, BILOOKIY VV, et al. Effect of water diuresis with hydrogen saturation on the course of acute kidney damage during the separation of oxidation and phosphorylation[J]. J Med Life, 2022, 15(11): 1397-1402. DOI: 10.25122/jml-2022-0155.
    [12] WANG Y, WANG P, LIU C, et al. Hydrogen-rich saline attenuates chronic allodynia after bone fractures via reducing spinal CXCL1/CXCR2-mediated iron accumulation in mice[J]. Brain Sci, 2022, 12(12): 1610. DOI: 10.3390/brainsci12121610.
    [13] ZHANG J, ZHOU H, LIU J, et al. Protective effects of hydrogen inhalation during the warm ischemia phase against lung ischemia-reperfusion injury in rat donors after cardiac death[J]. Microvasc Res, 2019, 125: 103885. DOI: 10.1016/j.mvr.2019.103885.
    [14] QUAN L, ZHENG B, ZHOU H. Protective effects of molecular hydrogen on lung injury from lung transplantation[J]. Exp Biol Med(Maywood), 2021, 246(12): 1410-1418. DOI: 10.1177/15353702211007084.
    [15] TAKAHASHI M, CHEN-YOSHIKAWA TF, SAITO M, et al. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury[J]. Eur J Cardiothorac Surg, 2017, 51(3): 442-448. DOI: 10.1093/ejcts/ezw342.
    [16] VAN RAEMDONCK D, KESHAVJEE S, LEVVEY B, et al. Donation after circulatory death in lung transplantation-five-year follow-up from ISHLT Registry[J]. J Heart Lung Transplant, 2019, 38(12): 1235-1245. DOI: 10.1016/j.healun.2019.09.007.
    [17] ISKENDER I, CYPEL M, MARTINU T, et al. Effects of warm versus cold ischemic donor lung preservation on the underlying mechanisms of injuries during ischemia and reperfusion[J]. Transplantation, 2018, 102(5): 760-768. DOI: 10.1097/TP.0000000000002140.
    [18] ZHOU H, FU Z, WEI Y, et al. Hydrogen inhalation decreases lung graft injury in brain-dead donor rats[J]. J Heart Lung Transplant, 2013, 32(2): 251-258. DOI: 10.1016/j.healun.2012.11.007.
    [19] GE YS, ZHANG QZ, LI H, et al. Hydrogen-rich saline protects against hepatic injury induced by ischemia-reperfusion and laparoscopic hepatectomy in swine[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(1): 48-61. DOI: 10.1016/j.hbpd.2018.12.001.
    [20] UTO K, SAKAMOTO S, QUE W, et al. Hydrogen-rich solution attenuates cold ischemia-reperfusion injury in rat liver transplantation[J]. BMC Gastroenterol, 2019, 19(1): 25. DOI: 10.1186/s12876-019-0939-7.
    [21] TERASAKI Y, OHSAWA I, TERASAKI M, et al. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(4): L415-L426. DOI: 10.1152/ajplung.00008.2011.
    [22] NĘCKI M, ANTOŃCZYK R, PANDEL A, et al. Impact of cold ischemia time on frequency of airway complications among lung transplant recipients[J]. Transplant Proc, 2020, 52(7): 2160-2164. DOI: 10.1016/j.transproceed.2020.03.047.
    [23] ZHENG P, KANG J, XING E, et al. Lung inflation with hydrogen during the cold ischemia phase alleviates lung ischemia-reperfusion injury by inhibiting pyroptosis in rats[J]. Front Physiol, 2021, 12: 699344. DOI: 10.3389/fphys.2021.699344.
    [24] ZHANG G, LI Z, MENG C, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period[J]. Transplantation, 2018, 102(8): 1253-1261. DOI: 10.1097/TP.0000000000002276.
    [25] SAITO M, CHEN-YOSHIKAWA TF, TAKAHASHI M, et al. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation[J]. J Thorac Cardiovasc Surg, 2020, 159(5): 2110-2118. DOI: 10.1016/j.jtcvs.2019.09.175.
    [26] KAYAWAKE H, CHEN-YOSHIKAWA TF, SAITO M, et al. Protective effects of a hydrogen-rich preservation solution in a canine lung transplantation model[J]. Ann Thorac Surg, 2021, 111(1): 246-252. DOI: 10.1016/j.athoracsur.2020.05.076.
    [27] HAAM S, LEE JG, PAIK HC, et al. Hydrogen gas inhalation during ex vivo lung perfusion of donor lungs recovered after cardiac death[J]. J Heart Lung Transplant, 2018, 37(10): 1271-1278. DOI: 10.1016/j.healun.2018.06.007.
    [28] KELLY WU W, GUENTHART BA, O'NEILL JD, et al. Technique for xenogeneic cross-circulation to support human donor lungs ex vivo[J]. J Heart Lung Transplant, 2022, 42(3): 335-344. DOI: 10.1016/j.healun.2022.11.002.
    [29] YAMANASHI K, OHSUMI A, ODA H, et al. Reduction of donor mononuclear phagocytes with clodronate-liposome during ex vivo lung perfusion attenuates ischemia-reperfusion injury[J]. J Thorac Cardiovasc Surg, 2022, DOI: 10.1016/j.jtcvs.2022.10.022[Epub ahead of print].
    [30] BISBEE CR, SHERARD C, KWON J, et al. Devices for donor lung preservation[J]. Expert Rev Med Devices, 2022: 1-6. DOI: 10.1080/17434440.2022.2151359.
    [31] WANG A, ALI A, KESHAVJEE S, et al. Ex vivo lung perfusion for donor lung assessment and repair: a review of translational interspecies models[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 319(6): L932-L940. DOI: 10.1152/ajplung.00295.2020.
    [32] GHOSH A, SUMI MP, TUPTA B, et al. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic[J]. Redox Biol, 2022, 56: 102478. DOI: 10.1016/j.redox.2022.102478.
    [33] HAAM S, LEE S, PAIK HC, et al. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death[J]. Eur J Cardiothorac Surg, 2015, 48(4): 542-547. DOI: 10.1093/ejcts/ezv057.
    [34] KAWAMURA T, HUANG CS, TOCHIGI N, et al. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats[J]. Transplantation, 2010, 90(12): 1344-1351. DOI: 10.1097/TP.0b013e3181fe1357.
    [35] OZEKI N, YAMAWAKI-OGATA A, NARITA Y, et al. Hydrogen water alleviates obliterative airway disease in mice[J]. Gen Thorac Cardiovasc Surg, 2020, 68(2): 158-163. DOI: 10.1007/s11748-019-01195-3.
  • 加载中
图(1)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  67
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回