留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响人胰岛存活的关键基因及靶向保护方法探讨

李万里, 张莹莹, 张婷, 等. 影响人胰岛存活的关键基因及靶向保护方法探讨[J]. 器官移植, 2023, 14(2): 273-279. doi: 10.3969/j.issn.1674-7445.2023.02.014
引用本文: 李万里, 张莹莹, 张婷, 等. 影响人胰岛存活的关键基因及靶向保护方法探讨[J]. 器官移植, 2023, 14(2): 273-279. doi: 10.3969/j.issn.1674-7445.2023.02.014
Li Wanli, Zhang Yingying, Zhang Ting, et al. Analysis of key genes and targeted protection methods affecting the survival of human islets[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 273-279. doi: 10.3969/j.issn.1674-7445.2023.02.014
Citation: Li Wanli, Zhang Yingying, Zhang Ting, et al. Analysis of key genes and targeted protection methods affecting the survival of human islets[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 273-279. doi: 10.3969/j.issn.1674-7445.2023.02.014

影响人胰岛存活的关键基因及靶向保护方法探讨

doi: 10.3969/j.issn.1674-7445.2023.02.014
基金项目: 

国家自然科学基金青年科学基金 81900627

广西科技基地和人才专项 桂科AD22035122

广西研究生教育创新计划项目 YCSW2022355

广西中医药大学研究生教育创新计划项目 YCXJ2021091

广西高校中青年教师科研基础能力提升项目 2020KY07044

广西中医药大学B类“高层次人才培育创新团队” 2022B008

详细信息
    作者简介:
    通讯作者:

    高宏君,博士,主任医师,研究方向为器官移植与胰岛移植,Email:gao4056@163.com

  • 中图分类号: R617, R335+.6

Analysis of key genes and targeted protection methods affecting the survival of human islets

More Information
  • 摘要:   目的  探讨影响人胰岛存活的关键基因及靶向保护方法。  方法  采用生物信息学方法,在基因表达综合(GEO)数据库中经过筛选比对,选择基因表达谱(GSE53454)。使用GEO2R工具筛选出24、48、72 h 3个时间段暴露于白细胞介素(IL)-1β和干扰素(IFN)-γ的人胰岛处理组(暴露组)和非暴露组之间的差异表达基因(DEG)。使用DAVID进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。通过STRING和Cytoscape应用构建蛋白质-蛋白质相互作用(PPI)网络。  结果  共鉴定出69个上调的DEG和2个下调的DEG。GO分析结果显示,在生物过程中,DEG在对病毒的防御反应、炎症反应等方面富集;细胞成分中,DEG在细胞外隙、质膜外侧、细胞外区域显著富集;分子功能中,DEG在趋化因子活性、细胞因子活性方面显著富集。KEGG分析结果显示,DEG主要在细胞因子-细胞因子受体相互作用、病毒蛋白与细胞因子和细胞因子受体的相互作用等信号通路中富集。STRING分析结果选出了10个连接度较高的核心基因(STAT1、CXCL10、IRF1、IL6、CXCL9、CCL5、CXCL11、ISG15、CD274、IFIT3),均在暴露于IL-1β和IFN-γ的人胰岛中显著上调。KEGG再富集发现6个基因(STAT1、CXCL10、CXCL9、CXCL11、CCL5、IL6),主要在Toll样受体信号通路中显著富集。  结论  STAT1、CXCL10、CXCL9、CXCL11、CCL5、IL6为影响人胰岛存活的关键基因,主要在Toll样受体信号通路中富集,是胰岛保护的重要靶点。

     

  • 图  1  不同干预时间段的交集基因

    注:A图为不同时间段上调基因的交集;B图不同时间段下调基因的交集。

    Figure  1.  Intersection genes of different intervention time periods

    图  2  交集基因的GO富集结果

    Figure  2.  GO enrichment results for intersecting genes

    图  3  交集基因的KEGG富集结果

    Figure  3.  KEGG enrichment results for intersecting genes

    图  4  PPI网络图

    注:A图为DEG编码蛋白的相互作用网络图;B图为前10个核心基因编码蛋白的相互作用网络图。

    Figure  4.  PPI network diagram

    图  5  核心基因的KEGG再富集结果

    Figure  5.  KEGG re-enrichment results of core genes

  • [1] JIANG H, LI Y, SHEN M, et al. Interferon-α promotes MHC I antigen presentation of islet β cells through STAT1-IRF7 pathway in type 1 diabetes[J]. Immunology, 2022, 166(2): 210-221. DOI: 10.1111/imm.13468.
    [2] 周智广. B淋巴细胞亚类与自身免疫糖尿病的胰岛功能[J]. 中华医学信息导报, 2018, 33(23): 13. DOI: 10.3969/j.issn.1000-8039.2018.23.011.

    ZHOU ZG. B lymphocyte subclasses and islet function in autoimmune diabetes[J]. Chin Med News, 2018, 33(23): 13. DOI: 10.3969/j.issn.1000-8039.2018.23.011.
    [3] GOU W, WANG J, SONG L, et al. Alpha-1 antitrypsin suppresses macrophage activation and promotes islet graft survival after intrahepatic islet transplantation[J]. Am J Transplant, 2021, 21(5): 1713-1724. DOI: 10.1111/ajt.16342.
    [4] CHEN C, RONG P, YANG M, et al. The role of interleukin-1β in destruction of transplanted islets[J]. Cell Transplant, 2020, 29: 963689720934413. DOI: 10.1177/0963689720934413.
    [5] 中华医学会器官移植学分会. 胰岛移植临床技术操作规范(2019版)[J]. 器官移植, 2019, 10(6): 621-627. DOI: 10.3969/j.issn.1674-7445.2019.06.001.

    Branch of Organ Transplantation of Chinese Medical Association. Clinical technical operation specification of pancreatic islet transplantation (2019 edition)[J]. Organ Transplant, 2019, 10(6): 621-627. DOI: 10.3969/j.issn.1674-7445.2019.06.001.
    [6] DUGBARTEY GJ. Carbon monoxide in pancreatic islet transplantation: a new therapeutic alternative to patients with severe type 1 diabetes mellitus[J]. Front Pharmacol, 2021, 12: 750816. DOI: 10.3389/fphar.2021.750816.
    [7] HUBBER EL, RACKHAM CL, JONES PM. Protecting islet functional viability using mesenchymal stromal cells[J]. Stem Cells Transl Med, 2021, 10(5): 674-680. DOI: 10.1002/sctm.20-0466.
    [8] YAN LL, YE LP, CHEN YH, et al. The influence of microenvironment on survival of intraportal transplanted islets[J]. Front Immunol, 2022, 13: 849580. DOI: 10.3389/fimmu.2022.849580.
    [9] SONG Y, FENG T, CAO W, et al. Identification of key genes in nasopharyngeal carcinoma based on bioinformatics analysis[J]. Comput Intell Neurosci, 2022: 9022700. DOI: 10.1155/2022/9022700.
    [10] LIU Z, OU C, XIANG S, et al. Expression and regulatory network analysis of BICC1 for aged Sca-1-positive bone narrow mesenchymal stem cells[J]. Dis Markers, 2022: 4759172. DOI: 10.1155/2022/4759172.
    [11] XU X, QI J, YANG J, et al. Up-regulation of TRIM32 associated with the poor prognosis of acute myeloid leukemia by integrated bioinformatics analysis with external validation[J]. Front Oncol, 2022, 12: 848395. DOI: 10.3389/fonc.2022.848395.
    [12] LIU C, LIU J, WU D, et al. Construction of immune-related ceRNA network in dilated cardiomyopathy: based on sex differences[J]. Front Genet, 2022, 13: 882324. DOI: 10.3389/fgene.2022.882324.
    [13] ZHENG H, QIAN X, TIAN W, et al. Exploration of the common gene characteristics and molecular mechanism of Parkinson's disease and Crohn's disease from transcriptome data[J]. Brain Sci, 2022, 12(6): 774. DOI: 10.3390/brainsci12060774.
    [14] STANLEY WJ, TRIVEDI PM, SUTHERLAND AP, et al. Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells[J]. J Mol Endocrinol, 2017, 59(4): 325-337. DOI: 10.1530/JME-17-0089.
    [15] LEBRETON F, HANNA R, WASSMER CH, et al. Mechanisms of immunomodulation and cytoprotection conferred to pancreatic islet by human amniotic epithelial cells[J]. Stem Cell Rev Rep, 2022, 18(1): 346-359. DOI: 10.1007/s12015-021-10269-w.
    [16] DHAYAL S, LESLIE KA, BAITY M, et al. Temporal regulation of interferon signalling in human EndoC-βH1 cells[J]. J Mol Endocrinol, 2022, 69(2): 299-313. DOI: 10.1530/JME-21-0224.
    [17] MOORE F, NAAMANE N, COLLI ML, et al. STAT1 is a master regulator of pancreatic β-cell apoptosis and islet inflammation[J]. J Biol Chem, 2011, 286(2): 929-941. DOI: 10.1074/jbc.M110.162131.
    [18] DOS SANTOS RS, MARROQUI L, VELAYOS T, et al. DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway[J]. Diabetologia, 2019, 62(3): 459-472. DOI: 10.1007/s00125-018-4782-0.
    [19] NANO E, PETROPAVLOVSKAIA M, ROSENBERG L. Islet neogenesis associated protein (INGAP) protects pancreatic β cells from IL-1β and IFNγ-induced apoptosis[J]. Cell Death Discov, 2021, 7(1): 56. DOI: 10.1038/s41420-021-00441-z.
    [20] BARRA JM, KOZLOVSKAYA V, KEPPLE JD, et al. Xenotransplantation of tannic acid-encapsulated neonatal porcine islets decreases proinflammatory innate immune responses[J]. Xenotransplantation, 2021, 28(6): e12706. DOI: 10.1111/xen.12706.
    [21] NIGI L, BRUSCO N, GRIECO GE, et al. Pancreatic alpha-cells contribute together with beta-cells to CXCL10 expression in type 1 diabetes[J]. Front Endocrinol (Lausanne), 2020, 11: 630. DOI: 10.3389/fendo.2020.00630.
    [22] ZENG Z, LAN T, WEI Y, et al. CCL5/CCR5 axis in human diseases and related treatments[J]. Genes Dis, 2022, 9(1): 12-27. DOI: 10.1016/j.gendis.2021.08.004.
    [23] CAI XH, WANG GQ, LIANG R, et al. CORM-2 pretreatment attenuates inflammation-mediated islet dysfunction[J]. Cell Transplant, 2020, 29: 963689720903691. DOI: 10.1177/0963689720903691.
    [24] OH E, AHN M, AFELIK S, et al. Syntaxin 4 expression in pancreatic β-cells promotes islet function and protects functional β-cell mass[J]. Diabetes, 2018, 67(12): 2626-2639. DOI: 10.2337/db18-0259.
    [25] YOSHIMATSU G, KUNNATHODI F, SARAVANAN PB, et al. Pancreatic β-cell-derived IP-10/CXCL10 isletokine mediates early loss of graft function in islet cell transplantation[J]. Diabetes, 2017, 66(11): 2857-2867. DOI: 10.2337/db17-0578.
    [26] CHRISTEN U, KIMMEL R. Chemokines as drivers of the autoimmune destruction in type 1 diabetes: opportunity for therapeutic intervention in consideration of an optimal treatment schedule[J]. Front Endocrinol (Lausanne), 2020, 11: 591083. DOI: 10.3389/fendo.2020.591083.
    [27] JAVEED N, HER TK, BROWN MR, et al. Pro-inflammatory β cell small extracellular vesicles induce β cell failure through activation of the CXCL10/CXCR3 axis in diabetes[J]. Cell Rep, 2021, 36(8): 109613. DOI: 10.1016/j.celrep.2021.109613.
    [28] NARDELLI TR, VANZELA EC, BENEDICTO KC, et al. Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition[J]. J Mol Endocrinol, 2018, 61(1): 25-36. DOI: 10.1530/JME-16-0257.
    [29] ZAMMIT NW, SEEBERGER KL, ZAMERLI J, et al. Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation[J]. Xenotransplantation, 2021, 28(3): e12669. DOI: 10.1111/xen.12669.
    [30] ABADPOUR S, TYRBERG B, SCHIVE SW, et al. Inhibition of the prostaglandin D2-GPR44/DP2 axis improves human islet survival and function[J]. Diabetologia, 2020, 63(7): 1355-1367. DOI: 10.1007/s00125-020-05138-z.
    [31] SATO N, HAGA J, ANAZAWA T, et al. Ex vivo pretreatment of islets with mitomycin C: reduction in immunogenic potential of islets by suppressing secretion of multiple chemotactic factors[J]. Cell Transplant, 2017, 26(8): 1392-1404. DOI: 10.1177/0963689717721233.
    [32] KIM G, LEE HS, OH BJ, et al. Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation[J]. Am J Transplant, 2021, 21(4): 1440-1452. DOI: 10.1111/ajt.16323.
    [33] FUMAGALLI G, MONFRINI M, DONZELLI E, et al. Protective effect of human mesenchymal stem cells on the survival of pancreatic islets[J]. Int J Stem Cells, 2020, 13(1): 116-126. DOI: 10.15283/ijsc19094.
    [34] WANG K, LI L, JIN J, et al. Fatty acid synthase (Fasn) inhibits the expression levels of immune response genes via alteration of alternative splicing in islet cells[J]. J Diabetes Complications, 2022, 36(6): 108159. DOI: 10.1016/j.jdiacomp.2022.108159.
    [35] FANG C, HUANG Y, PEI Y, et al. Genome-wide gene expression profiling reveals that CD274 is up-regulated new-onset type 1 diabetes mellitus[J]. Acta Diabetol, 2017, 54(8): 757-767. DOI: 10.1007/s00592-017-1005-y.
    [36] CHITTEZHATH M, WAI CMM, TAY VSY, et al. TLR4 signals through islet macrophages to alter cytokine secretion during diabetes[J]. J Endocrinol, 2020, 247(1): 87. DOI: 10.1530/JOE-20-0131.
    [37] BENNER SE, WALTER DL, THUMA JR, et al. Toll-like receptor 3 is critical to the pancreatic islet milieu that is required for coxsackievirus B4-induced type 1 diabetes in female nonobese diabetic mice[J]. Pancreas, 2022, 51(1): 48-55. DOI: 10.1097/MPA.0000000000001960.
    [38] LOKA RS, SONG Z, SLETTEN ET, et al. Heparan sulfate mimicking glycopolymer prevents pancreatic β cell destruction and suppresses inflammatory cytokine expression in islets under the challenge of upregulated heparanase[J]. ACS Chem Biol, 2022, 17(6): 1387-1400. DOI: 10.1021/acschembio.1c00908.
    [39] WANG H, WEI J, HU H, et al. Oral administration of bacterial β cell expansion factor A (BefA) alleviates diabetes in mice with type 1 and type 2 diabetes[J]. Oxid Med Cell Longev, 2022: 9206039. DOI: 10.1155/2022/9206039.
    [40] KWON EY, CHOI MS. Luteolin targets the toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice[J]. Nutrients, 2018, 10(10): 1415. DOI: 10.3390/nu10101415.
    [41] CHUNG H, HONG SJ, CHOI SW, et al. High mobility group box 1 secretion blockade results in the reduction of early pancreatic islet graft loss[J]. Biochem Biophys Res Commun, 2019, 514(4): 1081-1086. DOI: 10.1016/j.bbrc.2019.05.003.
    [42] ZHANG J, CHEN L, WANG F, et al. Extracellular HMGB1 exacerbates autoimmune progression and recurrence of type 1 diabetes by impairing regulatory T cell stability[J]. Diabetologia, 2020, 63(5): 987-1001. DOI: 10.1007/s00125-020-05105-8.
  • 加载中
图(6)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  123
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回