留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化应激反应在边缘供肝肝移植缺血-再灌注损伤中的作用研究进展

高伟东 杨龙龙 尹清臣

高伟东, 杨龙龙, 尹清臣. 氧化应激反应在边缘供肝肝移植缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019
引用本文: 高伟东, 杨龙龙, 尹清臣. 氧化应激反应在边缘供肝肝移植缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019
Gao Weidong, Yang Longlong, Yin Qingchen. Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019
Citation: Gao Weidong, Yang Longlong, Yin Qingchen. Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(1): 126-131. doi: 10.3969/j.issn.1674-7445.2022.01.019

氧化应激反应在边缘供肝肝移植缺血-再灌注损伤中的作用研究进展

doi: 10.3969/j.issn.1674-7445.2022.01.019
基金项目: 

河北省重点研发计划 182777241

详细信息
    作者简介:

    高伟东,男,1994年生,硕士,住院医师,研究方向为肝脏缺血-再灌注损伤机制及保护,Email:1015798962@qq.com

    通讯作者:

    尹清臣,男,1968年生,硕士,主任医师,研究方向为肝脏相关疾病防治,Email:yqc1909@163.com

  • 中图分类号: R617, R364.5

Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation

More Information
  • 摘要: 常见的边缘供肝主要包括脂肪变性供肝、高龄供肝、小体积供肝、心脏死亡器官捐献(DCD)供肝等。边缘供肝的应用可在一定程度上解决供肝数量严重短缺的问题,但边缘供肝面临着缺血-再灌注损伤(IRI)的难题,且IRI程度相比正常供肝更加严重,是导致移植失败的重要原因,其中氧化应激反应又是引起边缘供肝IRI的重要因素。因此如何减少氧化应激反应及解决边缘供肝IRI的难题成为临床研究的热点问题。活性氧簇(ROS)介导的氧化应激反应贯穿IRI整个过程,本文就氧化应激反应在边缘供肝肝移植IRI中的作用及以ROS为靶点的防治进行综述,以期为临床提供参考。

     

  • [1] GOLDARACENA N, CULLEN JM, KIM DS, et al. Expanding the donor pool for liver transplantation with marginal donors[J]. Int J Surg, 2020, 82S: 30-35. DOI: 10.1016/j.ijsu.2020.05.024.
    [2] 高伟东, 冯赞杰, 彭慈军, 等. 高迁移率族蛋白B1与肝缺血再灌注损伤的关系[J]. 临床肝胆病杂志, 2019, 35(3): 669-671. DOI: 10.3969/j.issn.1001-5256.2019.03.049.

    GAO WD, FENG ZJ, PENG CJ, et al. Association between high-mobility group box B1 and hepatic ischemia-reperfusion injury[J]. J Clin Hepatol, 2019, 35(3): 669-671. DOI: 10.3969/j.issn.1001-5256.2019.03.049.
    [3] JIANG Y, HE X, SIMONARO CM, et al. Acid ceramidase protects against hepatic ischemia/reperfusion injury by modulating sphingolipid metabolism and reducing inflammation and oxidative stress[J]. Front Cell Dev Biol, 2021, 9: 633657. DOI: 10.3389/fcell.2021.633657.
    [4] GARZA-LOMBÓ C, PAPPA A, PANAYIOTIDIS MI, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105-117. DOI: 10.1016/j.mito.2020.01.002.
    [5] CHEUNG EC, DENICOLA GM, NIXON C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer[J]. Cancer Cell, 2020, 37(2): 168-182. DOI: 10.1016/j.ccell.2019.12.012.
    [6] BAGATI A, MOPARTHY S, FINK EE, et al. KLF9-dependent ROS regulate melanoma progression in stage-specific manner[J]. Oncogene, 2019, 38(19): 3585-3597. DOI: 10.1038/s41388-019-0689-6.
    [7] GAO W, FENG Z, ZHANG S, et al. Anti-inflammatory and antioxidant effect of eucommia ulmoides polysaccharide in hepatic ischemia-reperfusion injury by regulating ROS and the TLR-4-NF-κB pathway[J]. Biomed Res Int, 2020: 1860637. DOI: 10.1155/2020/1860637.
    [8] DAR WA, SULLIVAN E, BYNON JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801. DOI: 10.1111/liv.14091.
    [9] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
    [10] 赵英鹏, 李立, 陈刚, 等. 减体积肝移植在大鼠脂肪肝供肝肝移植模型中的应用[J]. 中国组织工程研究, 2018, 22(4): 582-586. DOI: 10.3969/j.issn.2095-4344.0094.

    ZHAO YP, LI L, CHEN G, et al. Reduced-size liver transplantation with fatty liver donors in a rat model[J]. Chin J Tissue Eng Res, 2018, 22(4): 582-586. DOI: 10.3969/j.issn.2095-4344.0094.
    [11] LAN X, ZHANG H, LI HY, et al. Feasibility of using marginal liver grafts in living donor liver transplantation[J]. World J Gastroenterol, 2018, 24(23): 2441-2456. DOI: 10.3748/wjg.v24.i23.2441.
    [12] LINARES I, HAMAR M, SELZNER N, et al. Steatosis in liver transplantation: current limitations and future strategies[J]. Transplantation, 2019, 103(1): 78-90. DOI: 10.1097/TP.0000000000002466.
    [13] LI J, WANG T, LIU P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/Akt-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD[J]. Food Funct, 2021, 12(9): 3898-3918. DOI: 10.1039/d0fo02736g.
    [14] WU D, LIU Z, WANG Y, et al. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway[J]. Oxid Med Cell Longev, 2021: 5599997. DOI: 10.1155/2021/5599997.
    [15] ZHAO WJ, BIAN YP, WANG QH, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress[J]. Acta Pharmacol Sin, 2021, DOI: 10.1038/s41401-021-00681-w[Epubaheadofprint].
    [16] YANG F, WANG S, LIU Y, et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of Kupffer cells[J]. Free Radic Biol Med, 2018, 124: 395-407. DOI: 10.1016/j.freeradbiomed.2018.06.043.
    [17] FAN H, SHEN Y, REN Y, et al. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease[J]. Nutr Metab (Lond), 2021, 18(1): 50. DOI: 10.1186/s12986-021-00554-3.
    [18] YANG X, LI C, NG KT, et al. IL-17a exacerbates hepatic ischemia-reperfusion injury in fatty liver by promoting neutrophil infiltration and mitochondria-driven apoptosis[J]. J Leukoc Biol, 2020, 108(5): 1603-1613. DOI: 10.1002/JLB.3MA0520-716R.
    [19] LI Y, SUN Y, ZANG Y, et al. GanMeijian ameliorates lipid accumulation and oxidative damage in alcoholic fatty liver disease in Wistar rats[J]. Life Sci, 2020, 255: 117721. DOI: 10.1016/j.lfs.2020.117721.
    [20] YANG Q, ZHAO ZZ, XIE J, et al. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways[J]. Int Immunopharmacol, 2021, 97: 107717. DOI: 10.1016/j.intimp.2021.107717.
    [21] ZHANG T, GU J, GUO J, et al. Renalase attenuates mouse fatty liver ischemia/reperfusion injury through mitigating oxidative stress and mitochondrial damage via activating SIRT1[J]. Oxid Med Cell Longev, 2019: 7534285. DOI: 10.1155/2019/7534285.
    [22] MILLARE B, O'ROURKE B, TRAYANOVA N. Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release[J]. Sci Rep, 2020, 10(1): 15758. DOI: 10.1038/s41598-020-71308-z.
    [23] LI Z, CHEN L, CHU H, et al. Estrogen alleviates hepatocyte necroptosis depending on GPER in hepatic ischemia reperfusion injury[J]. J Physiol Biochem, 2021, DOI: 10.1007/s13105-021-00846-5[Epubaheadofprint].
    [24] ZHANG J, REN Y, BI J, et al. Involvement of kindlin-2 in irisin's protection against ischaemia reperfusion-induced liver injury in high-fat diet-fed mice[J]. J Cell Mol Med, 2020, 24(22): 13081-13092. DOI: 10.1111/jcmm.15910.
    [25] YANG F, SHANG L, WANG S, et al. TNFα-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response[J]. Oxid Med Cell Longev, 2019: 2301903. DOI: 10.1155/2019/2301903.
    [26] THURMAN RG, GAO W, CONNOR HD, et al. Role of Kupffer cells in failure of fatty livers following liver transplantation and alcoholic liver injury[J]. J Gastroenterol Hepatol, 1995, 10 (Suppl 1): S24-S30. DOI: 10.1111/j.1440-1746.1995.tb01791.x.
    [27] GAO Q, MULVIHILL MS, SCHEUERMANN U, et al. Improvement in liver transplant outcomes from older donors: a US national analysis[J]. Ann Surg, 2019, 270(2): 333-339. DOI: 10.1097/SLA.0000000000002876.
    [28] MUSTIAN MN, SHELTON BA, MACLENNAN PA, et al. Ethnic and age disparities in outcomes among liver transplant waitlist candidates[J]. Transplantation, 2019, 103(7): 1425-1432. DOI: 10.1097/TP.0000000000002523.
    [29] KAN C, UNGELENK L, LUPP A, et al. Ischemia-reperfusion injury in aged livers-the energy metabolism, inflammatory response, and autophagy[J]. Transplantation, 2018, 102(3): 368-377. DOI: 10.1097/TP.0000000000001999.
    [30] HUNT NJ, KANG SWS, LOCKWOOD GP, et al. Hallmarks of aging in the liver[J]. Comput Struct Biotechnol J, 2019, 17: 1151-1161. DOI: 10.1016/j.csbj.2019.07.021.
    [31] OKAYA T, BLANCHARD J, SCHUSTER R, et al. Age-dependent responses to hepatic ischemia/reperfusion injury[J]. Shock, 2005, 24(5): 421-427. DOI: 10.1097/01.shk.0000181282.14050.11.
    [32] PARK Y, HIROSE R, COATNEY JL, et al. Ischemia-reperfusion injury is more severe in older versus young rat livers[J]. J Surg Res, 2007, 137(1): 96-102. DOI: 10.1016/j.jss.2006.08.013.
    [33] SRIVASTAVA A, BARTH E, ERMOLAEVA MA, et al. Tissue-specific gene expression changes are associated with aging in mice[J]. Genom Proteom Bioinform, 2020, 18(4): 430-442. DOI: 10.1016/j.gpb.2020.12.001.
    [34] QI R, JIANG R, XIAO H, et al. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor[J]. Life Sci, 2020, 254: 117776. DOI: 10.1016/j.lfs.2020.117776.
    [35] KIREEV RA, CUESTA S, IBARROLA C, et al. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin[J]. J Surg Res, 2012, 178(2): 922-934. DOI: 10.1016/j.jss.2012.04.060.
    [36] ZAOUALÍ MA, REITER RJ, PADRISSA-ALTÉS S, et al. Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury[J]. J Pineal Res, 2011, 50(2): 213-221. DOI: 10.1111/j.1600-079X.2010.00831.x.
    [37] CHAN KM, WANG YC, WU TH, et al. Encouraging split liver transplantation for two adult recipients to mitigate the high incidence of wait-list mortality in the setting of extreme shortage of deceased donors[J]. J Clin Med, 2019, 8(12): 2095. DOI: 10.3390/jcm8122095.
    [38] BRUNNER SM, BRENNFLECK FW, JUNGER H, et al. Successful auxiliary two-staged partial resection liver transplantation (ASPIRE-LTx) for end-stage liver disease to avoid small-for-size situations[J]. BMC Surg, 2021, 21(1): 166. DOI: 10.1186/s12893-021-01167-6.
    [39] LAU NS, JACQUES A, MCCAUGHAN G, et al. Addressing the challenges of split liver transplantation through technical advances. a systematic review[J]. Transplant Rev (Orlando), 2021, 35(3): 100627. DOI: 10.1016/j.trre.2021.100627.
    [40] ELIAS-MIRÓ M, JIMÉNEZ-CASTRO MB, RODÉS J, et al. Current knowledge on oxidative stress in hepatic ischemia/reperfusion[J]. Free Radic Res, 2013, 47(8): 555-568. DOI: 10.3109/10715762.2013.811721.
    [41] ZHONG Z, CONNOR HD, FROH M, et al. Free radical-dependent dysfunction of small-for-size rat liver grafts: prevention by plant polyphenols[J]. Gastroenterology, 2005, 129(2): 652-664. DOI: 10.1016/j.gastro.2005.05.060.
    [42] CUI YY, QIAN JM, YAO AH, et al. SOD mimetic improves the function, growth, and survival of small-size liver grafts after transplantation in rats[J]. Transplantation, 2012, 94(7): 687-694. DOI: 10.1097/TP.0b013e3182633478.
    [43] ZHANG B, LIU QH, ZHOU CJ, et al. Protective effect of eNOS overexpression against ischemia/reperfusion injury in small-for-size liver transplantation[J]. Exp Ther Med, 2016, 12(5): 3181-3188. DOI: 10.3892/etm.2016.3762.
    [44] MULLER X, MOHKAM K, MUELLER M, et al. Hypothermic oxygenated perfusion versus normothermic regional perfusion in liver transplantation from controlled donation after circulatory death: first international comparative study[J]. Ann Surg, 2020, 272(5): 751-758. DOI: 10.1097/SLA.0000000000004268.
    [45] TAYLOR R, ALLEN E, RICHARDS JA, et al. Survival advantage for patients accepting the offer of a circulatory death liver transplant[J]. J Hepatol, 2019, 70(5): 855-865. DOI: 10.1016/j.jhep.2018.12.033.
    [46] 魏宝龙, 王政禄, 侯文, 等. 功能性热缺血时间对肝移植大鼠肝组织炎症细胞因子的影响[J]. 中华器官移植杂志, 2019, 40(3): 170-174. DOI: 10.3760/cma.j.issn.0254-1785.2019.03.011.

    WEI BL, WANG ZL, HOU W, et al. Changes of inflammatory cytokines in rat liver transplantation model under different functional warm ischemic durations[J]. Chin J Organ Transplant, 2019, 40(3): 170-174. DOI: 10.3760/cma.j.issn.0254-1785.2019.03.011.
    [47] LEVESQUE E, SALLOUM C, FERAY C, et al. The utility of ECMO, not just after but also during liver transplantation[J]. Transplantation, 2019, 103(10): e319-e320. DOI: 10.1097/TP.0000000000002844.
    [48] SUN XY, DONG JH, QIN KE, et al. Single-center study on transplantation of livers donated after cardiac death: a report of 6 cases[J]. Exp Ther Med, 2016, 11(3): 988-992. DOI: 10.3892/etm.2016.3001.
    [49] JIMÉNEZ-GALANES S, MENEU-DIAZ MJ, ELOLA-OLASO AM, et al. Liver transplantation using uncontrolled non-heart-beating donors under normothermic extracorporeal membrane oxygenation[J]. Liver Transpl, 2009, 15(9): 1110-1118. DOI: 10.1002/lt.21867.
  • 加载中
图(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  137
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回