留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫抑制剂细胞内浓度测定的研究进展

邵琨 陈冰 周佩军

邵琨, 陈冰, 周佩军. 免疫抑制剂细胞内浓度测定的研究进展[J]. 器官移植, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018
引用本文: 邵琨, 陈冰, 周佩军. 免疫抑制剂细胞内浓度测定的研究进展[J]. 器官移植, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018
Shao Kun, Chen Bing, Zhou Peijun. Research progress on determination of intracellular concentration of immunosuppressant[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018
Citation: Shao Kun, Chen Bing, Zhou Peijun. Research progress on determination of intracellular concentration of immunosuppressant[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018

免疫抑制剂细胞内浓度测定的研究进展

doi: 10.3969/j.issn.1674-7445.2021.04.018
基金项目: 

国家自然科学基金 81973387

详细信息
    作者简介:

    邵琨,男,1979年生,博士,主治医师,研究方向为免疫抑制剂药效评价,Email:shaokunrj@163.com

    通讯作者:

    周佩军,男,1968年生,博士,主任医师,研究方向为移植免疫学,Email:peijunzhou@yahoo.com

  • 中图分类号: R617, R969

Research progress on determination of intracellular concentration of immunosuppressant

More Information
  • 摘要: 细胞外浓度测定作为目前器官移植临床免疫抑制剂治疗药物监测(TDM)的主要手段,与免疫抑制剂药效之间的相关性不理想。随着液相质谱技术的广泛应用,免疫抑制剂细胞内浓度检测技术逐渐成熟。由于细胞内浓度测定可直接检测靶细胞内的药物暴露水平,理论上能更好地反映免疫抑制剂的药效。本文总结了免疫抑制剂细胞内浓度测定的历史与现状,着重介绍免疫抑制剂细胞内浓度的测定方法及其与药效的相关性。免疫抑制剂细胞内浓度测定具有较好的临床应用价值,值得推广。

     

  • [1] OPTN/SRTR 2018 annual data report: introduction[J]. Am J Transplant, 2020, 20 (Suppl s1): 11-19. DOI: 10.1111/ajt.15671.
    [2] LOUPY A, LEFAUCHEUR C. Antibody-mediated rejection of solid-organ allografts[J]. N Engl J Med, 2018, 379(12): 1150-1160. DOI: 10.1056/NEJMra1802677.
    [3] SEN A, CALLISEN H, LIBRICZ S, et al. Complications of solid organ transplantation: cardiovascular, neurologic, renal, and gastrointestinal[J]. Crit Care Clin, 2019, 35(1): 169-186. DOI: 10.1016/j.ccc.2018.08.011.
    [4] Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients[J]. Am J Transplant, 2009, 9 (Suppl 3): S1-S155. DOI: 10.1111/j.1600-6143.2009.02834.x.
    [5] COSSART AR, ISBEL NM, SCUDERI C, et al. Pharmacokinetic and pharmacodynamic considerations in relation to calcineurin usage in elderly kidney transplant recipients[J]. Front Pharmacol, 2021, 12: 635165. DOI: 10.3389/fphar.2021.635165.
    [6] SIKMA MA, HUNAULT CC, HUITEMA ADR, et al. Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation[J]. Clin Pharmacokinet, 2020, 59(4): 403-408. DOI: 10.1007/s40262-019-00846-1.
    [7] FONTOVA P, COLOM H, RIGO-BONNIN R, et al. Influence of the circadian timing system on tacrolimus pharmacokinetics and pharmacodynamics after kidney transplantation[J]. Front Pharmacol, 2021, 12: 636048. DOI: 10.3389/fphar.2021.636048.
    [8] TRON C, WOILLARD JB, HOUSSEL-DEBRY P, et al. Pharmacogenetic-whole blood and intracellular pharmacokinetic-pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients[J]. PLoS One, 2020, 15(3): e0230195. DOI: 10.1371/journal.pone.0230195.
    [9] SALLUSTIO BC, NOLL BD, HU R, et al. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients[J]. Br J Clin Pharmacol, 2021, DOI: 10.1111/bcp.14806[Epub ahead of print].
    [10] CAPRON A, LERUT J, VERBAANDERT C, et al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in liver biopsies after hepatic transplantation: correlation with histopathologic staging of rejection[J]. Ther Drug Monit, 2007, 29(3): 340-348. DOI: 10.1097/FTD.0b013e31805c73f1.
    [11] MD DOM ZI, NOLL BD, COLLER JK, et al. Validation of an LC-MS/MS method for the quantification of mycophenolic acid in human kidney transplant biopsies[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 945/946: 171-177. DOI: 10.1016/j.jchromb.2013.11.056.
    [12] ZAHIR H, NAND RA, BROWN KF, et al. Validation of methods to study the distribution and protein binding of tacrolimus in human blood[J]. J Pharmacol Toxicol Methods, 2001, 46(1): 27-35. DOI: 10.1016/s1056-8719(02)00158-2.
    [13] CAPRON A, LERUT J, LATINNE D, et al. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study[J]. Transpl Int, 2012, 25(1): 41-47. DOI: 10.1111/j.1432-2277.2011.01365.x.
    [14] KLAASEN RA, BERGAN S, BREMER S, et al. Longitudinal study of tacrolimus in lymphocytes during the first year after kidney transplantation[J]. Ther Drug Monit, 2018, 40(5): 558-566. DOI: 10.1097/FTD.0000000000000539.
    [15] HAN SS, YANG SH, KIM MC, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function[J]. PLoS One, 2016, 11(4): e0153491. DOI: 10.1371/journal.pone.0153491.
    [16] IN 'T VELD AE, GRIEVINK HW, SAGHARI M, et al. Immunomonitoring of tacrolimus in healthy volunteers: the first step from PK- to PD-based therapeutic drug monitoring?[J]. Int J Mol Sci, 2019, 20(19): 4710. DOI: 10.3390/ijms20194710.
    [17] LEPAGE JM, LELONG-BOULOUARD V, LECOUF A, et al. Cyclosporine monitoring in peripheral blood mononuclear cells: feasibility and interest. a prospective study on 20 renal transplant recipients[J]. Transplant Proc, 2007, 39(10): 3109-3110. DOI: 10.1016/j.transproceed.2007.03.103.
    [18] ANSERMOT N, FATHI M, VEUTHEY JL, et al. Quantification of cyclosporine A in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry using a column-switching approach[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 857(1): 92-99. DOI: 10.1016/j.jchromb.2007.07.001.
    [19] ANSERMOT N, REBSAMEN M, CHABERT J, et al. Influence of ABCB1 gene polymorphisms and P-glycoprotein activity on cyclosporine pharmacokinetics in peripheral blood mononuclear cells in healthy volunteers[J]. Drug Metab Lett, 2008, 2(2): 76-82. DOI: 10.2174/187231208784040951.
    [20] ABDELHALIM MS, KENAWY AS, DEMELLAWY HHE, et al. The impact of omeprazole on mycophenolate pharmacokinetics in kidney transplant recipients[J]. Kidney Res Clin Pract, 2020, 39(4): 479-486. DOI: 10.23876/j.krcp.20.059.
    [21] NGUYEN THI MT, CAPRON A, MOURAD M, et al. Mycophenolic acid quantification in human peripheral blood mononuclear cells using liquid chromatography-tandem mass spectrometry[J]. Clin Biochem, 2013, 46(18): 1909-1911. DOI: 10.1016/j.clinbiochem.2013.09.009.
    [22] THI MT, MOURAD M, CAPRON A, et al. Plasma and intracellular pharmacokinetic-pharmacodynamic analysis of mycophenolic acid in de novo kidney transplant patients[J]. Clin Biochem, 2015, 48(6): 401-405. DOI: 10.1016/j.clinbiochem.2014.12.005.
    [23] CHEN B, LU JQ, SHAO K, et al. Establishment of a liquid chromatography-tandem mass spectrometry method for the determination of immunosuppressant levels in the peripheral blood mononuclear cells of Chinese renal transplant recipients[J]. Ther Drug Monit, 2020, 42(5): 686-694. DOI: 10.1097/FTD.0000000000000765.
    [24] ROULLET-RENOLEAU F, LEMAITRE F, ANTIGNAC M, et al. Everolimus quantification in peripheral blood mononuclear cells using ultra high performance liquid chromatography tandem mass spectrometry[J]. J Pharm Biomed Anal, 2012, 66: 278-281. DOI: 10.1016/j.jpba.2012.03.042.
    [25] ROBERTSEN I, VETHE NT, MIDTVEDT K, et al. Closer to the site of action: everolimus concentrations in peripheral blood mononuclear cells correlate well with whole blood concentrations[J]. Ther Drug Monit, 2015, 37(5): 675-680. DOI: 10.1097/FTD.0000000000000185.
    [26] ROBERTSEN I, DEBORD J, ÅSBERG A, et al. A limited sampling strategy to estimate exposure of everolimus in whole blood and peripheral blood mononuclear cells in renal transplant recipients using population pharmacokinetic modeling and bayesian estimators[J]. Clin Pharmacokinet, 2018, 57(11): 1459-1469. DOI: 10.1007/s40262-018-0646-5.
    [27] ROBERTSEN I, FALCK P, ANDREASSEN AK, et al. Endomyocardial, intralymphocyte, and whole blood concentrations of ciclosporin A in heart transplant recipients[J]. Transplant Res, 2013, 2(1): 5. DOI: 10.1186/2047-1440-2-5.
    [28] ROMANO P, DA LUZ FERNANDES M, DE ALMEIDA REZENDE EBNER P, et al. UPLC-MS/MS assay validation for tacrolimus quantitative determination in peripheral blood T CD4+ and B CD19+ lymphocytes[J]. J Pharm Biomed Anal, 2018, 152: 306-314. DOI: 10.1016/j.jpba.2018.01.002.
    [29] ALGHANEM SS, SOLIMAN MM, ALIBRAHIM AA, et al. Monitoring tacrolimus trough concentrations during the first year after kidney transplantation: a national retrospective cohort study[J]. Front Pharmacol, 2020, 11: 566638. DOI: 10.3389/fphar.2020.566638.
    [30] BRUNET M, VAN GELDER T, ÅSBERG A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. DOI: 10.1097/FTD.0000000000000640.
    [31] FRANCKE MI, HESSELINK DA, LI Y, et al. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients[J]. Br J Clin Pharmacol, 2021, 87(4): 1918-1929. DOI: 10.1111/bcp.14585.
    [32] YILDIRIM E, ŞAHIN G, KALTUŞ Z, et al. Effect of CYP3A5 and ABCB1 gene polymorphisms on tacrolimus blood concentration in renal transplant recipients[J]. Clin Lab, 2019, 65(11). DOI: 10.7754/Clin.Lab.2019.190343.
    [33] SU L, YIN L, YANG J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews[J]. Medicine (Baltimore), 2019, 98(26): e16113. DOI: 10.1097/MD.0000000000016113.
    [34] SHAO S, HU L, HAN Z, et al. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: a Meta-analysis[J]. Transl Androl Urol, 2020, 9(2): 673-683. DOI: 10.21037/tau.2020.03.42.
    [35] LEMAITRE F, VETHE NT, D'AVOLIO A, et al. Measuring intracellular concentrations of calcineurin inhibitors: expert consensus from the international association of therapeutic drug monitoring and clinical toxicology expert panel[J]. Ther Drug Monit, 2020, 42(5): 665-670. DOI: 10.1097/FTD.0000000000000780.
    [36] METZ DK, HOLFORD N, KAUSMAN JY, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention[J]. Transplantation, 2019, 103(10): 2012-2030. DOI: 10.1097/TP.0000000000002762.
  • 加载中
图(1)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  227
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回