留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年ATC肾移植相关基础与转化医学研究国际前沿热点

何健楠 孙启全

何健楠, 孙启全. 2020年ATC肾移植相关基础与转化医学研究国际前沿热点[J]. 器官移植, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004
引用本文: 何健楠, 孙启全. 2020年ATC肾移植相关基础与转化医学研究国际前沿热点[J]. 器官移植, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004
He Jiannan, Sun Qiquan. International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC[J]. ORGAN TRANSPLANTATION, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004
Citation: He Jiannan, Sun Qiquan. International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC[J]. ORGAN TRANSPLANTATION, 2021, 12(1): 23-28. doi: 10.3969/j.issn.1674-7445.2021.01.004

2020年ATC肾移植相关基础与转化医学研究国际前沿热点

doi: 10.3969/j.issn.1674-7445.2021.01.004
基金项目: 

国家自然科学基金 81970650

国家自然科学基金 81770753

国家自然科学基金 81800662

详细信息
    作者简介:

    何健楠,男,1993年生,八年制博士研究生,研究方向为排斥反应和免疫耐受,Email:hejn@mail2.sysu.edu.cn

    通讯作者:

    孙启全,男,1973年生,博士,教授,主任医师,研究方向为肾移植相关疾病,Email:sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617, R392.4

International frontier hotspots of basic and translational medicine research related to renal transplantation at the 2020 ATC

More Information
  • 摘要: 美国移植年会(ATC)是移植学领域一年一度的国际学术盛会,其报道的内容囊括了世界各地学者在移植领域的最新成果,也引领了移植相关研究的前沿方向。本文就2020年ATC中与肾移植相关的基础与转化医学研究国际前沿热点进行概述,包括免疫记忆性细胞功能和免疫记忆机制的新发现,排斥反应和免疫耐受机制的最新探索,异种移植的研究现状,抗体介导的排斥反应(AMR)的潜在解决策略,纳米医学、单细胞RNA测序等新型技术在肾移植中的应用前景等。

     

  • [1] GEBHARDT T, WAKIM LM, EIDSMO L, et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus[J]. Nat Immunol, 2009, 10(5):524-530. DOI: 10.1038/ni.1718.
    [2] WAKIM LM, WOODWARD-DAVIS A, BEVAN MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence[J]. Proc Natl Acad Sci U S A, 2010, 107(42):17872-17879. DOI: 10.1073/pnas.1010201107.
    [3] ABOU-DAYA K, ZHAO D, TIEU R, et al. Tissue resident memory T cells in mouse renal transplantation [J]. Am J Transplant, 2020, 20 (Suppl 3):13.
    [4] KRUPNICK AS, LIN X, LI W, et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance[J]. J Clin Invest, 2014, 124(3):1130-1143. DOI: 10.1172/JCI71359.
    [5] LI S, XIE Q, ZENG Y, et al. A naturally occurring CD8(+)CD122(+) T-cell subset as a memory-like Treg family[J]. Cell Mol Immunol, 2014, 11(4):326-331. DOI: 10.1038/cmi.2014.25.
    [6] MORRIS AB, PINELLI DF, LIU D, et al. Memory T cell-mediated rejection is mitigated by FcγRIIB expression on CD8+ T cells[J]. Am J Transplant, 2020, 20(8):2206-2215. DOI: 10.1111/ajt.15837.
    [7] LIU W, XIAO X, DEMIRCI G, et al. Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms[J]. J Immunol, 2012, 188(6):2703-2711. DOI: 10.4049/jimmunol.1102997.
    [8] SUN JC, BEILKE JN, LANIER LL. Adaptive immune features of natural killer cells[J]. Nature, 2009, 457(7229):557-561. DOI: 10.1038/nature07665.
    [9] DAI H, LAN P, ZHAO D, et al. PIRs mediate innate myeloid cell memory to nonself MHC molecules[J]. Science, 2020, 368(6495):1122-1127. DOI: 10.1126/science.aax4040.
    [10] FORD ML, ADAMS AB, PEARSON TC. Targeting co-stimulatory pathways: transplantation and autoimmunity[J]. Nat Rev Nephrol, 2014, 10(1):14-24. DOI: 10.1038/nrneph.2013.183.
    [11] KINNEAR G, JONES ND, WOOD KJ. Costimulation blockade: current perspectives and implications for therapy[J]. Transplantation, 2013, 95(4):527-535. DOI: 10.1097/TP.0b013e31826d4672.
    [12] LIU D, FORD ML. CD11b is a novel alternate receptor for CD154 during alloimmunity[J]. Am J Transplant, 2020, 20(8):2216-2225. DOI: 10.1111/ajt.15835.
    [13] AHRENS K, O JM, SOMMER W, et al. Cardiac allograft tolerance can be achieved in non-human primates via transient mixed hematopoietic chimerism and erythropoietin administration [J]. Am J Transplant, 2020, 20 (Suppl 3):1025.
    [14] BUTLER JR, TECTOR AJ. CRISPR genome-editing: a medical revolution[J]. J Thorac Cardiovasc Surg, 2017, 153(2):488-491. DOI: 10.1016/j.jtcvs.2016.08.067.
    [15] COOPER DKC, GASTON R, ECKHOFF D, et al. Xenotransplantation-the current status and prospects[J]. Br Med Bull, 2018, 125(1):5-14. DOI: 10.1093/bmb/ldx043.
    [16] MA DH, SASAKI H, HIROSE T, et al. Successful long-term TMA- and rejection- free survival of a kidney xenograft with triple xenoantigen knockout plus insertion of multiple human transgenes[J]. Am J Transplant, 2020, 20(Suppl 3):752.
    [17] HIGGINBOTHAM L, MATHEWS D, BREEDEN CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3):221-230. DOI: 10.1111/xen.12166.
    [18] CHONG AS, ROTHSTEIN DM, SAFA K, et al. Outstanding questions in transplantation: B cells, alloantibodies, and humoral rejection[J]. Am J Transplant, 2019, 19(8):2155-2163. DOI: 10.1111/ajt.15323.
    [19] BERGER M, LEFAUCHEUR C, JORDAN SC. Update on C1 esterase inhibitor in human solid organ transplantation[J]. Transplantation, 2019, 103(9):1763-1775. DOI: 10.1097/TP.0000000000002717.
    [20] BLANTON C, REYES J, EERHART M, et al. Donor intervention and recipient treatment with recombinant human C1 inhibitor prevents delayed graft function in a non-human primate model of kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3):256.
    [21] HAJEBI S, RABIEE N, BAGHERZADEH M, et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems[J]. Acta Biomater, 2019, 92:1-18. DOI: 10.1016/j.actbio.2019.05.018.
    [22] HASHIMOTO Y, MUKAI SA, SASAKI Y, et al. Nanogel tectonics for tissue engineering: protein delivery systems with nanogel chaperones[J]. Adv Healthc Mater, 2018, 7(23):e1800729. DOI: 10.1002/adhm.201800729.
    [23] ESKANDARI SK, ALHADDAD JB, SULKAJ I, et al. Regulatory T cells engineered with TCR-signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter[J] Am J Transplant, 2020, 20(suppl 3):331.
    [24] TINEL C, LAMARTHÉE B, VON TOKARSKI F, et al. A monocyte-derived microRNA signature for antibody-mediated rejection in kidney transplantation[J]. Am J Transplant, 2020, 20(Suppl 3):309.
    [25] GAO S. Data analysis in single-cell transcriptome sequencing[J]. Methods Mol Biol, 2018, 1754:311-326. DOI: 10.1007/978-1-4939-7717-8_18.
    [26] WU H, HUMPHREYS BD. The promise of single-cell RNA sequencing for kidney disease investigation[J]. Kidney Int, 2017, 92(6):1334-1342. DOI: 10.1016/j.kint. 2017.06.033.
    [27] MALONE AF, HUMPHREYS BD. Single-cell transcriptomics and solid organ transplantation[J]. Transplantation, 2019, 103(9):1776-1782. DOI: 10.1097/TP.0000000000002725.
    [28] NAIK AS, MENON R, OTTO E, et al. Single cell RNA sequencing of normal kidney allograft surveillance biopsies show evidence of dynamic glomerular endothelial cell activation [J]. Am J Transplant, 2020, 20 (Suppl 3):13.
  • 加载中
计量
  • 文章访问数:  203
  • HTML全文浏览量:  84
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回