留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

霉酚酸类药物在器官移植受者中的药代动力学研究进展

曹懿睿 贾亦臣

曹懿睿, 贾亦臣. 霉酚酸类药物在器官移植受者中的药代动力学研究进展[J]. 器官移植, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018
引用本文: 曹懿睿, 贾亦臣. 霉酚酸类药物在器官移植受者中的药代动力学研究进展[J]. 器官移植, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018
Cao Yirui, Jia Yichen. Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018
Citation: Cao Yirui, Jia Yichen. Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018

霉酚酸类药物在器官移植受者中的药代动力学研究进展

doi: 10.3969/j.issn.1674-7445.2020.05.018
基金项目: 国家自然科学基金(81770747)
详细信息
    作者简介:

    曹懿睿,男,1996年生,硕士,研究方向为器官移植,Email: 13817049614@163.com

    通讯作者:

    贾亦臣,男,1983年生,博士,主治医师,研究方向为器官移植,Email:jia.yichen@zs-hospital.sh.cn

  • 中图分类号: R617, R392.4

Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients

  • 摘要: 霉酚酸(MPA)类药物是器官移植受者常用的免疫抑制剂,具有良好的免疫抑制效果,但用药不足或过量均不利于受者预后,需要准确控制给药剂量。MPA的代谢具有较大个体差异,因此这类药物的代谢规律、监测手段在临床上具有重要意义。本文综述了近5年MPA类药物在器官移植受者中代谢规律的研究进展,归纳了药物代谢规律和监测手段研究的主要结果和方向,对器官移植中MPA类药物代谢的研究进行了简要的回顾和展望。

     

  • [1] IIDA M, FUKUDA T, UCHIDA N, et al. Mycophenolate mofetil use after unrelated hematopoietic stem cell transplantation for prophylaxis and treatment of graft-vs.- host disease in adult patients in Japan[J]. Clin Transplant, 2014, 28(9):980-989. DOI: 10.1111/ctr.12405.
    [2] BUDDE K, GLANDER P, KRÄMER BK, et al. Conversion from mycophenolate mofetil to entericcoated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes[J]. Transplantation, 2007, 83(4):417-424. DOI:10.1097/01. tp.0000251969.72691.ea.
    [3] NEUBERGER M, SOMMERER C, BÖHNISCH S, et al.Effect of mycophenolic acid on inosine monophosphate dehydrogenase (IMPDH) activity in liver transplant patients[J]. Clin Res Hepatol Gastroenterol, 2020, DOI: 10.1016/j.clinre.2019.12.001[Epub ahead of print].
    [4] LANGMAN LJ, LEGATT DF, HALLORAN PF, et al. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients[J]. Transplantation, 1996, 62(5):666-672. DOI: 10.1097/00007890-199609150-00022.
    [5] BULLINGHAM R, MONROE S, NICHOLLS A, et al. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration[J]. J Clin Pharmacol, 1996, 36(4):315-324. DOI: 10.1002/j.1552-4604.1996.tb04207.x.
    [6] MUNTEAN A, LUCAN M. Immunosuppression in kidney transplantation[J]. Clujul Med, 2013, 86(3):177- 180. https://www.researchgate.net/publication/285733994_Immunosuppression_in_kidney_transplantation
    [7] BENTATA Y. Mycophenolates: the latest modern and potent immunosuppressive drugs in adult kidney transplantation: what we should know about them?[J]. Artif Organs, 2020, 44(6):561-576. DOI: 10.1111/aor.13623.
    [8] BUDDE K, CURTIS J, KNOLL G, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study[J]. Am J Transplant, 2004, 4(2):237-243. DOI: 10.1046/j.1600-6143.2003.00321.x.
    [9] QIAO LW, QU QS, JIANG X. Evaluation of tolerance and safety of conversion from mycophenolate mofetil to entericcoated mycophenolic acid in renal transplant recipients[J]. J Biol Regul Homeost Agents, 2017, 31(1):141-146. https://www.researchgate.net/publication/320871923_Evaluation_of_tolerance_and_safety_of_conversion_from_mycophenolate_mofetil_to_enteric-coated_mycophenolic_acid_in_renal_transplant_recipients
    [10] COOPER M, SALVADORI M, BUDDE K, et al. Entericcoated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing[J]. Transplant Rev (Orlando), 2012, 26(4):233-240. DOI:10.1016/j.trre. 2012.02.001.
    [11] KIANG TKL, ENSOM MHH. Population pharmacokinetics of mycophenolic acid: an update[J]. Clin Pharmacokinet, 2018, 57(5):547-558. DOI: 10.1007/s40262-017-0593-6.
    [12] SALVADORI M, HOLZER H, DE MATTOS A, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients[J]. Am J Transplant, 2004, 4(2):231- 236. DOI: 10.1046/j.1600-6143.2003.00337.x.
    [13] STAATZ CE, TETT SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update[J]. Arch Toxicol, 2014, 88(7):1351-1389. DOI: 10.1007/s00204-014-1247-1.
    [14] ZHANG J, JIA M, ZUO L, et al. Nonlinear relationship between enteric-coated mycophenolate sodium dose and mycophenolic acid exposure in Han kidney transplantation recipients[J]. Acta Pharm Sin B, 2017, 7(3):347-352. DOI: 10.1016/j.apsb.2016.11.003.
    [15] ETTENGER R, BARTOSH S, CHOI L, et al. Pharmacokinetics of enteric-coated mycophenolate sodium in stable pediatric renal transplant recipients[J]. Pediatr Transplant, 2005, 9(6):780-787. DOI:10.1111/ j.1399-3046.2005.00386.x.
    [16] 王琴, 杨春兰, 冯丽娟, 等.基因多态性与器官移植受者霉酚酸个体化治疗研究进展[J].安徽医科大学学报, 2018, 53(1):161-166. DOI:10.19405/j.cnki.issn1000- 1492.2018.01.035.

    WANG Q, YANG CL, FENG LJ, et al. Research progress of gene polymorphism and individualized mycophenolic acid therapy in organ transplant recipients [J].Acta Univ Med Anhui, 2018, 53(1):161-166. DOI:10.19405/j.cnki. issn1000-1492.2018.01.035
    [17] DE JONGE H, NAESENS M, KUYPERS DR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation[J]. Ther Drug Monit, 2009, 31(4):416-435. DOI: 10.1097/FTD.0b013e3181aa36cd.
    [18] LAMBA V, SANGKUHL K, SANGHAVI K, et al. PharmGKB summary: mycophenolic acid pathway[J]. Pharmacogenet Genomics, 2014, 24(1):73-79. DOI:10.1097/ FPC.0000000000000010.
    [19] ZHANG J, SUN Z, ZHU Z, et al. Pharmacokinetics of mycophenolate mofetil and development of limited sampling strategy in early kidney transplant recipients[J]. Front Pharmacol, 2018, 9:908. DOI: 10.3389/fphar.2018.00908.
    [20] YU ZC, ZHOU PJ, WANG XH, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients[J]. Acta Pharmacol Sin, 2017, 38(11):1566-1579. DOI: 10.1038/aps.2017.115.
    [21] TETT SE, SAINT-MARCOUX F, STAATZ CE, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure[J]. Transplant Rev (Orlando), 2011, 25(2):47-57. DOI:10.1016/ j.trre.2010.06.001.
    [22] NAITO T, MINO Y, OTSUKA A, et al. Impact of calcineurin inhibitors on urinary excretion of mycophenolic acid and its glucuronide in kidney transplant recipients[J]. J Clin Pharmacol, 2009, 49(6):710-718. DOI: 10.1177/0091270009335003.
    [23] WANG XX, FENG MR, NGUYEN H, et al. Population pharmacokinetics of mycophenolic acid in lung transplant recipients with and without cystic fibrosis[J]. Eur J Clin Pharmacol, 2015, 71(6):673-679. DOI:10.1007/s00228- 015-1854-7.
    [24] JUNG HY, LEE S, JEON Y, et al. Mycophenolic acid trough concentration and dose are associated with hematologic abnormalities but not rejection in kidney transplant recipients[J]. J Korean Med Sci, 2020, 35(24):e185. DOI: 10.3346/jkms.2020.35.e185.
    [25] CHAABANE A, AOUAM K, BEN FREDJ N, et al. Limited sampling strategy of mycophenolic acid in adult kidney transplant recipients: influence of the posttransplant period and the pharmacokinetic profile[J]. J Clin Pharmacol, 2013, 53(9):925-933. DOI:10.1002/ jcph.125.
    [26] HAN N, YUN HY, KIM IW, et al. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients[J]. Eur J Clin Pharmacol, 2014, 70(10):1211-1219. DOI: 10.1007/s00228-014-1728-4.
    [27] JIA Y, PENG B, LI L, et al. Estimation of mycophenolic acid area under the curve with limited-sampling strategy in Chinese renal transplant recipients receiving enteric-coated mycophenolate sodium[J]. Ther Drug Monit, 2017, 39(1):29-36. DOI:10.1097/ FTD.0000000000000360.
    [28] JIA Y, WANG R, LI L, et al. Sites of gastrointestinal lesion induced by mycophenolate mofetil: a comparison with enteric-coated mycophenolate sodium in rats[J]. BMC Pharmacol Toxicol, 2018, 19(1):39. DOI:10.1186/ s40360-018-0234-1.
    [29] ZHANG Q, TAO Y, ZHU Y, et al. Bioequivalence and pharmacokinetic comparison of two mycophenolate mofetil formulations in healthy Chinese male volunteers: an open-label, randomized-sequence, single-dose, twoway crossover study[J]. Clin Ther, 2010, 32(1):171-178. DOI: 10.1016/j.clinthera.2010.01.013.
    [30] OKOUR M, JACOBSON PA, AHMED MA, et al. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure[J]. J Clin Pharmacol, 2018, 58(5):628-639. DOI:10.1002/ jcph.1064.
    [31] DANOVITCH GM, GILL J, BUNNAPRADIST S. Immunosuppression of the elderly kidney transplant recipient[J]. Transplantation, 2007, 84(3):285-291. DOI: 10.1097/01.tp.0000275423.69689.dc.
    [32] M E I E R - K R I E S C H E H U, K A P L A N B. Immunosuppression in elderly renal transplant recipients: are current regimens too aggressive?[J]. Drugs Aging, 2001, 18(10):751-759. DOI:10.2165/00002512-200118100- 00004.
    [33] WANG CX, MENG FH, CHEN LZ, et al. Population pharmacokinetics of mycophenolic acid in senile Chinese kidney transplant recipients[J]. Transplant Proc, 2007, 39(5):1392-1395. DOI:10.1016/j.transproceed. 2007.02.082.
    [34] VELIČKOVIĆ-RADOVANOVIĆ RM, JANKOVIĆ SM, MILOVANOVIĆ JR, et al. Variability of mycophenolic acid elimination in the renal transplant recipients - population pharmacokinetic approach[J]. Ren Fail, 2015, 37(4):652-658. DOI:10.3109/088602 2X.2015.1010442.
    [35] BUSSALINO E, MARSANO L, PARODI A, et al. Everolimus for BKV nephropathy in kidney transplant recipients: a prospective, controlled study [J]. J Nephrol, 2020, DOI: 10.1007/s40620-020-00777-2[Epub ahead of print].
    [36] ROMANO P, AGENA F, DE ALMEIDA REZENDE EBNER P, et al. Longitudinal pharmacokinetics of mycophenolic acid in elderly renal transplant recipients compared to a younger control group: data from the nEverOld trial[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(2):189-199. DOI: 10.1007/s13318-018-0506-6.
    [37] TANG JT, DE WINTER BC, HESSELINK DA, et al. The pharmacokinetics and pharmacodynamics of mycophenolate mofetil in younger and elderly renal transplant recipients[J]. Br J Clin Pharmacol, 2017, 83(4):812-822. DOI: 10.1111/bcp.13154.
    [38] COSSART AR, COTTRELL WN, CAMPBELL SB, et al. Characterizing the pharmacokinetics and pharmacodynamics of immunosuppressant medicines and patient outcomes in elderly renal transplant patients[J]. Transl Androl Urol, 2019, 8(Suppl 2): S198-S213. DOI: 10.21037/tau.2018.10.16.
    [39] MEANEY CJ, SUDCHADA P, CONSIGLIO JD, et al. Influence of calcineurin inhibitor and sex on mycophenolic acid pharmacokinetics and adverse effects post-renal transplant[J]. J Clin Pharmacol, 2019, 59(10):1351-1365. DOI: 10.1002/jcph.1428.
    [40] SCHWARTZ JB. The influence of sex on pharmacokinetics [J]. Clin Pharmacokinet, 2003, 42(2):107-121. DOI:10. 2165/00003088-200342020-00001.
    [41] BARAU C, MELLOS A, CHHUN S, et al. Pharmacokinetics of mycophenolic acid and dose optimization in children after intestinal transplantation[J]. Ther Drug Monit, 2017, 39 (1):37-42. DOI: 10.1097/FTD.0000000000000363.
    [42] LE MEUR Y, BORROWS R, PESCOVITZ MD, et al. Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting[J]. Transplant Rev (Orlando), 2011, 25(2):58-64. DOI: 10.1016/j.trre.2011.01.002.
    [43] ALVAREZ-ELÍAS AC, YOO EC, TODOROVA EK, et al. A retrospective study on mycophenolic acid drug interactions: effect of prednisone, sirolimus, and tacrolimus with MPA[J]. Ther Drug Monit, 2017, 39(3):220-228. DOI: 10.1097/FTD.0000000000000403.
    [44] NOREIKAITÉ A, SAINT-MARCOUX F, MARQUET P, et al. Influence of cyclosporine and everolimus on the main mycophenolate mofetil pharmacokinetic parameters: cross-sectional study[J]. Medicine (Baltimore), 2017, 96(13):e6469. DOI: 10.1097/MD.0000000000006469.
    [45] MOHSIN N, AL-RAISI F, MILITSALA E, et al. Pharmacokinetics of mycophenolate mofetil in Omani patients on cyclosporine or tacrolimus[J]. Transplant Proc, 2015, 47(4):1122-1124. DOI:10.1016/ j.transproceed.2015.01.023.
    [46] PATEL CG, OGASAWARA K, AKHLAGHI F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus[J]. Xenobiotica, 2013, 43(3):229-235. DOI:10. 3109/00498254.2012.713531.
    [47] PICARD N. The pharmacokinetic interaction between mycophenolic acid and cyclosporine revisited: a commentary on "mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus"[J]. Xenobiotica, 2013, 43(9):836- 838. DOI: 10.3109/00498254.2012.761742.
    [48] DETERS M, KIRCHNER G, KOAL T, et al. Influence of cyclosporine on the serum concentration and biliary excretion of mycophenolic acid and 7-O-mycophenolic acid glucuronide[J]. Ther Drug Monit, 2005, 27(2):132- 138. DOI: 10.1097/01.ftd.0000152682.13647.5e.
    [49] RONG Y, MAYO P, ENSOM MHH, et al. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients[J]. Clin Pharmacokinet, 2019, 58(11):1483-1495. DOI: 10.1007/s40262-019-00771-3.
    [50] KIRPALANI A, ROTHFELS L, SHARMA AP, et al. Nephrotic state substantially enhances apparent mycophenolic acid clearance[J]. Clin Nephrol, 2019, 91(3):162-171. DOI: 10.5414/CN109583.
    [51] YOSHIMURA K, YANO I, YAMAMOTO T, et al. Population pharmacokinetics and pharmacodynamics of mycophenolic acid using the prospective data in patients undergoing hematopoietic stem cell transplantation[J]. Bone Marrow Transplant, 2018, 53(1):44-51. DOI:10. 1038/bmt.2017.213.
    [52] ZHANG D, CHOW DS. Clinical pharmacokinetics of mycophenolic acid in hematopoietic stem cell transplantation recipients[J]. Eur J Drug Metab Pharmacokinet, 2017, 42(2):183-189. DOI:10.1007/s13318- 016-0378-6.
    [53] GUO M, WANG ZJ, YANG HW, et al. Influence of genetic polymorphisms on mycophenolic acid pharmacokinetics and patient outcomes in renal transplantation[J]. Curr Drug Metab, 2018, 19(14):1199- 1205. DOI: 10.2174/1389200219666171227201608.
    [54] BOUAMAR R, HESSELINK DA, VAN SCHAIK RH, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients[J]. Pharmacogenet Genomics, 2012, 22(6):399-407. DOI: 10.1097/FPC.0b013e32834a8650.
    [55] CILIÃO HL, CAMARGO-GODOY RBO, SOUZA MF, et al. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil[J]. Mutat Res Genet Toxicol Environ Mutagen, 2018, 836(Pt B):97-102. DOI: 10.1016/j.mrgentox.2018.06.008.
    [56] SUNDERLAND A, RUSS G, SALLUSTIO B, et al. Effect of the proton-pump inhibitor pantoprazole on mycophenolic acid exposure in kidney and liver transplant recipients (IMPACT study): a randomized trial[J]. Nephrol Dial Transplant, 2020, 35(6):1060-1070. DOI: 10.1093/ndt/gfaa111.
    [57] BOŽINA N, LALIĆ Z, NAĐ-ŠKEGRO S, et al. Steadystate pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions[J]. Eur J Clin Pharmacol, 2017, 73(9):1129-1140. DOI: 10.1007/s00228-017-2285-4.
    [58] LLOBERAS N, TORRAS J, CRUZADO JM, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the symphony study[J]. Nephrol Dial Transplant, 2011, 26(11):3784-3793. DOI:10.1093/ndt/ gfr130.
    [59] TAGUE LK, BYERS DE, HACHEM R, et al. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid[J].Pharmacogenomics J, 2020, 20(1):69-79. DOI:10.1038/ s41397-019-0086-0.
    [60] CIFTCI HS, DEMIR E, KARADENIZ MS, et al. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant[J]. Ren Fail, 2018, 40(1):395- 402. DOI: 10.1080/0886022X.2018.1489285.
    [61] DE WINTER BC, MATHOT RA, SOMBOGAARD F, et al. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring[J]. Clin J Am Soc Nephrol, 2011, 6(3):656-663. DOI: 10.2215/CJN.05440610.
    [62] KUYPERS DR, LE MEUR Y, CANTAROVICH M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation[J]. Clin J Am Soc Nephrol, 2010, 5(2):341-358. DOI:10.2215/ CJN.07111009.
    [63] VAN HEST RM, HESSELINK DA, VULTO AG, et al. Individualization of mycophenolate mofetil dose in renal transplant recipients[J]. Expert Opin Pharmacother, 2006, 7(4):361-376. DOI: 10.1517/14656566.7.4.361.
    [64] WALLEMACQ P, ARMSTRONG VW, BRUNET M, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference[J]. Ther Drug Monit, 2009, 31(2):139-152. DOI: 10.1097/FTD.0b013e318198d092.
    [65] BERGER I, HAUBRICH K, ENSOM MHH, et al. RELATE: relationship of limited sampling strategy and adverse effects of mycophenolate mofetil in pediatric renal transplant patients[J]. Pediatr Transplant, 2019, 23(2):e13355. DOI: 10.1111/petr.13355.
    [66] MARTINY D, MACOURS P, COTTON F, et al. Reliability of mycophenolic acid monitoring by an enzyme multiplied immunoassay technique[J]. Clin Lab, 2010, 56(7/8):345-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=905e99b0360a2f540d8c24f875fb517f
    [67] GARG U, MUNAR A, FRAZEE C. Determination of mycophenolic acid and mycophenolic acid glucuronide using liquid chromatography tandem mass spectrometry (LC/MS/MS)[J]. Curr Protoc Toxicol, 2018, 75:18.21.1- 18.21.8. DOI: 10.1002/cptx.42.
    [68] BITTERSOHL H, HERBINGER J, WEN M, et al. Simultaneous determination of protein-unbound cyclosporine A and mycophenolic acid in kidney transplant patients using liquid chromatography-tandem mass spectrometry[J]. Ther Drug Monit, 2017, 39(3):211- 219. DOI: 10.1097/FTD.0000000000000392.
    [69] KIANG TK, ENSOM MH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update[J]. Expert Opin Drug Metab Toxicol, 2016, 12(5):545-553. DOI:10.1517/17425255.2016.11708 06.
    [70] HOLFORD NH, BUCLIN T. Safe and effective variability-a criterion for dose individualization[J]. Ther Drug Monit, 2012, 34(5):565-568. DOI:10.1097/ FTD.0b013e31826aabc3.
    [71] FILLER G, ALVAREZ-ELÍAS AC, MCINTYRE C, et al. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy[J]. Pediatr Nephrol, 2017, 32(1):21-29. DOI: 10.1007/s00467-016-3352-2.
    [72] MCCUNE JS, BEMER MJ, LONG-BOYLE J. Pharmacokinetics, pharmacodynamics, and pharmacogenomics of immunosuppressants in allogeneic hematopoietic cell transplantation: part II[J]. Clin Pharmacokinet, 2016, 55(5):551-593. DOI:10.1007/s40262- 015-0340-9.
    [73] METZ DK, HOLFORD N, KAUSMAN JY, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention [J]. Transplantation, 2019, 103(10):2012- 2030. DOI: 10.1097/TP.0000000000002762.
    [74] MORRIS RG. Target concentration strategy for cyclosporin monitoring[J]. Clin Pharmacokinet, 1997, 32(3):175-179. DOI: 10.2165/00003088-199732030-00001.
    [75] HALE MD, NICHOLLS AJ, BULLINGHAM RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation[J]. Clin Pharmacol Ther, 1998, 64(6):672-683. DOI:10.1016/ S0009-9236(98)90058-3.
    [76] VAN GELDER T, HILBRANDS LB, VANRENTERGHEM Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation[J]. Transplantation, 1999, 68(2):261-266. DOI:10.1097/00007890-199907270- 00018.
    [77] LE MEUR Y, BÜCHLER M, THIERRY A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation[J]. Am J Transplant, 2007, 7(11):2496-2503. DOI: 10.1111/j.1600-6143.2007.01983.x.
    [78] LE MEUR Y, THIERRY A, GLOWACKI F, et al. Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil[J]. Transplantation, 2011, 92(11):1244-1251. DOI:10.1097/ TP.0b013e318234e134.
    [79] KUYPERS DR, DE JONGE H, NAESENS M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, openlabel, prospective, clinical follow-up study in renal allograft recipients[J]. Clin Ther, 2008, 30(4):673-683. DOI: 10.1016/j.clinthera.2008.04.014.
    [80] MASAKI N, IWADOH K, TONSHO M, et al. Trough level of mycophenolic acid did not affect de novo DSA development in kidney transplantation[J]. Transplant Proc, 2019, 51(8):2624-2628. DOI:10.1016/ j.transproceed.2019.03.078.
    [81] PAYEN S, ZHANG D, MAISIN A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients[J]. Ther Drug Monit, 2005, 27(3):378-388. DOI:10.1097/01. ftd.0000159784.25872.f6.
    [82] BARRACLOUGH KA, ISBEL NM, JOHNSON DW, et al. A limited sampling strategy for the simultaneous estimation of tacrolimus, mycophenolic acid and unbound prednisolone exposure in adult kidney transplant recipients[J]. Nephrology (Carlton), 2012, 17(3):294-299. DOI: 10.1111/j.1440-1797.2011.01560.x.
    [83] BARALDO M, ISOLA M, FERUGLIO MT, et al. Therapeutic mycophenolic acid monitoring by means of limited sampling strategy in orthotopic heart transplant patients[J]. Transplant Proc, 2005, 37(5):2240-2243. DOI: 10.1016/j.transproceed.2005.03.090.
    [84] BARALDO M, COJUTTI PG, ISOLA M, et al. Validation of limited sampling strategy for estimation of mycophenolic acid exposure during the first year after heart transplantation[J]. Transplant Proc, 2009, 41(10):4277- 4284. DOI: 10.1016/j.transproceed.2009.08.077.
    [85] CAI W, YE C, SUN X, et al. Limited sampling strategy for predicting area under the concentration-time curve for mycophenolic acid in Chinese adults receiving mycophenolate mofetil and tacrolimus early after renal transplantation[J]. Ther Drug Monit, 2015, 37(3):304- 310. DOI: 10.1097/FTD.0000000000000165.
    [86] CAI W, CAI Q, XIONG N, et al. Limited sampling strategy for estimating mycophenolic acid exposure on day 7 post-transplant for two mycophenolate mofetil formulations derived from 20 Chinese renal transplant recipients[J]. Transplant Proc, 2018, 50(5):1298-1304. DOI: 10.1016/j.transproceed.2018.02.068.
    [87] ENOKIYA T, NISHIKAWA K, MURAKI Y, et al. Usefulness of limited sampling strategy for mycophenolic acid area under the curve considering postoperative days in living-donor renal transplant recipients with concomitant prolonged-release tacrolimus[J]. J Pharm Health Care Sci, 2017, 3:17. DOI: 10.1186/s40780-017-0086-7.
    [88] GAIES E, BEN SASSI M, EL JEBARI H, et al. Limited sampling strategy for the estimation of mycophenolic acid area under the curve in Tunisian renal transplant patients[J]. Nephrol Ther, 2017, 13(6):460-462. DOI:10. 1016/j.nephro.2017.02.010.
    [89] ALSMADI MM, ALFARAH MQ, ALBDERAT J, et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue[J]. Biopharm Drug Dispos, 2019, 40(9):325-340. DOI: 10.1002/bdd.2206.
    [90] FERREIRA PCL, THIESEN FV, DE ARAUJO TT, et al. Comparison of plasma and oral fluid concentrations of mycophenolic acid and its glucuronide metabolite by LC-MS in kidney transplant patients[J]. Eur J Clin Pharmacol, 2019, 75(4):553-559. DOI:10.1007/s00228- 018-02614-9.
    [91] BROOKS E, TETT SE, ISBEL NM, et al. Investigation of the association between total and free plasma and saliva mycophenolic acid concentrations following administration of enteric-coated mycophenolate sodium in adult kidney transplant recipients[J]. Clin Drug Investig, 2019, 39(12):1175-1184. DOI:10.1007/s40261- 019-00844-y.
    [92] ZWART TC, GOKOEL SRM, VAN DER BOOG PJM, et al. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device[J]. Br J Clin Pharmacol, 2018, 84(12):2889-2902. DOI: 10.1111/bcp.13755.
    [93] MARTIAL LC, HOOGTANDERS KEJ, SCHREUDER MF, et al. Dried blood spot sampling for tacrolimus and mycophenolic acid in children: analytical and clinical validation[J]. Ther Drug Monit, 2017, 39(4):412-421. DOI: 10.1097/FTD.0000000000000422.
  • 加载中
计量
  • 文章访问数:  302
  • HTML全文浏览量:  74
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-13
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回