留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用

吴俣 李佩璐 葛军 蒋廷亚

吴俣, 李佩璐, 葛军, 等. 嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用[J]. 器官移植, 2020, 11(5): 547-552. doi: 10.3969/j.issn.1674-7445.2020.05.003
引用本文: 吴俣, 李佩璐, 葛军, 等. 嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用[J]. 器官移植, 2020, 11(5): 547-552. doi: 10.3969/j.issn.1674-7445.2020.05.003
Wu Yu, Li Peilu, Ge Jun, et al. Application of chimeric antigen receptor-regulatory T cell immunotherapy in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 547-552. doi: 10.3969/j.issn.1674-7445.2020.05.003
Citation: Wu Yu, Li Peilu, Ge Jun, et al. Application of chimeric antigen receptor-regulatory T cell immunotherapy in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 547-552. doi: 10.3969/j.issn.1674-7445.2020.05.003

嵌合抗原受体调节性T细胞免疫疗法在器官移植中的应用

doi: 10.3969/j.issn.1674-7445.2020.05.003
基金项目: 

国家自然科学基金 31900722

详细信息
    作者简介:

    吴俣, 男, 1985年生, 博士, 副研究员, 研究方向为细胞治疗与分子免疫, Email:wuyu@allograftdx.com

    通讯作者:

    蒋廷亚, 男, 1986年生, 博士, 高级工程师, 研究方向为器官移植液体活组织检查, Email:jiangtingya@allograftdx.com

  • 中图分类号: R617, R392.4

Application of chimeric antigen receptor-regulatory T cell immunotherapy in organ transplantation

More Information
  • 摘要: 调节性T细胞(Treg)是对机体进行免疫负调控的一类T细胞亚群, 具有抑制排斥反应的作用。通过嵌合抗原受体(CAR)技术对Treg进行特异性的改造, 可以成功地将供体特异性抗原嵌合到Treg表面, 从而实时调节机体的免疫功能, 为诱导免疫耐受提供了一种新颖而有前景的治疗选择。本文综述了Treg在免疫相关疾病中的研究、CAR-Treg技术实现的主要难点及其在诱导器官移植免疫耐受方面的研究进展, 展望了CAR-Treg在器官移植领域应用的机会与挑战。

     

  • 图  1  嵌合HLA-A2抗原生产出供体特异性Treg的过程

    Figure  1.  The process of chimeric HLA-A2 antigen producing donor-specific Treg

  • [1] SELLARÉS J, DE FREITAS DG, MENGEL M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence[J]. Am J Transplant, 2012, 12(2):388-399. DOI: 10.1111/j.1600-6143.2011.03840.x.
    [2] FARKASH EA, COLVIN RB. Diagnostic challenges in chronic antibody-mediated rejection[J]. Nat Rev Nephrol, 2012, 8(5):255-257. DOI: 10.1038/nrneph.2012.61.
    [3] MATSUDA Y, SARWAL MM. Unraveling the role of allo-antibodies and transplant injury[J]. Front Immunol, 2016, 7:432. DOI: 10.3389/fimmu.2016.00432.
    [4] GONZÁLEZ-GALARZA FF, TAKESHITA LY, SANTOS EJ, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations[J]. Nucleic Acids Res, 2015, 43(Database issue):D784-D788. DOI: 10.1093/nar/gku1166.
    [5] 中华医学会器官移植学分会.器官移植免疫抑制剂临床应用技术规范(2019版)[J].器官移植, 2019, 10(3): 213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001.

    Branch of Organ Transplantation of Chinese Medical Association. Technical specifcation for clinical application of immunosuppressive agents in organ transplantation (2019 edition)[J]. Organ Transplant, 2019, 10(3): 213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001.
    [6] SIKMA MA, VAN MAARSEVEEN EM, VAN DE GRAAF EA, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation[J]. Am J Transplant, 2015, 15(9):2301-2313. DOI: 10.1111/ajt.13309.
    [7] ANDREWS LM, LI Y, DE WINTER BCM, et al. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients[J]. Expert Opin Drug Metab Toxicol, 2017, 13(12):1225-1236. DOI: 10.1080/17425255.2017.1395413.
    [8] BENNETT CL, CHRISTIE J, RAMSDELL F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of Foxp3[J]. Nat Genet, 2001, 27(1):20-21. DOI: 10.1038/83713.
    [9] BRUNKOW ME, JEFFERY EW, HJERRILD KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Nat Genet, 2001, 27(1):68-73. DOI: 10.1038/83784.
    [10] ROMANO M, TUNG SL, SMYTH LA, et al. Treg therapy in transplantation: a general overview[J]. Transpl Int, 2017, 30(8):745-753. DOI: 10.1111/tri.12909.
    [11] VAIKUNTHANATHAN T, SAFINIA N, BOARDMAN D, et al. Regulatory T cells: tolerance induction in solid organ transplantation[J]. Clin Exp Immunol, 2017, 189(2):197-210. DOI: 10.1111/cei.12978.
    [12] SAKAGUCHI S, TAKAHASHI T, YAMAZAKI S, et al. Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity[J]. Microbes Infect, 2001, 3(11):911-918. DOI: 10.1016/s1286-4579(01)01452-6.
    [13] SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3):1151-1164.
    [14] WEBER SE, HARBERTSON J, GODEBU E, et al. Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo[J]. J Immunol, 2006, 176(8):4730-4739. DOI: 10.4049/jimmunol.176.8.4730.
    [15] BISWAS M, KUMAR SRP, TERHORST C, et al. Gene therapy with regulatory T cells: a beneficial alliance[J]. Front Immunol, 2018, 9:554. DOI: 10.3389/fimmu.2018.00554.
    [16] TRZONKOWSKI P, SZARYŃSKA M, MYŚLIWSKA J, et al. Ex vivo expansion of CD4(+)CD25(+) T regulatory cells for immunosuppressive therapy[J]. Cytometry A, 2009, 75(3):175-188. DOI: 10.1002/cyto.a.20659.
    [17] DI IANNI M, FALZETTI F, CAROTTI A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation[J]. Blood, 2011, 117(14):3921-3928.DOI: 10.1182/blood-2010-10-311894.
    [18] THEIL A, TUVE S, OELSCHLÄGEL U, et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease[J]. Cytotherapy, 2015, 17(4):473-486. DOI: 10.1016/j.jcyt.2014.11.005.
    [19] WHITEHOUSE GP, HOPE A, SANCHEZ-FUEYO A. Regulatory T-cell therapy in liver transplantation[J]. Transpl Int, 2017, 30(8):776-784. DOI: 10.1111/tri.12998.
    [20] BLUESTONE JA, BUCKNER JH, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med, 2015, 7(315):315ra189. DOI: 10.1126/scitranslmed.aad4134.
    [21] ZHANG Q, LU W, LIANG CL, et al. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance[J]. Front Immunol, 2018, 9:2359. DOI: 10.3389/fimmu.2018.02359.
    [22] TRZONKOWSKI P, BIENIASZEWSKA M, JUŚCIŃSKA J, et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127-T regulatory cells[J]. Clin Immunol, 2009, 133(1):22-26. DOI: 10.1016/j.clim.2009.06.001.
    [23] MACDONALD KG, HOEPPLI RE, HUANG Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor[J]. J Clin Invest, 2016, 126(4):1413-1424. DOI: 10.1172/JCI82771.
    [24] BÉZIE S, CHARREAU B, VIMOND N, et al. Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice[J]. Blood Adv, 2019, 3(22):3522-3538. DOI: 10.1182/bloodadvances.2019000411.
    [25] BATTAGLIA M, STABILINI A, DRAGHICI E, et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance[J]. Diabetes, 2006, 55(1):40-49.
    [26] BATTAGLIA M, STABILINI A, MIGLIAVACCA B, et al. Rapamycin promotes expansion of functional CD4+CD25+Foxp3+ regulatory T cells of both healthy subjects and type 1 diabetic patients[J]. J Immunol, 2006, 177(12):8338-8347.DOI: 10.4049/jimmunol.177.12.8338.
    [27] ABOU-EL-ENEIN M, BAUER G, MEDCALF N, et al. Putting a price tag on novel autologous cellular therapies[J]. Cytotherapy, 2016, 18(8):1056-1061. DOI: 10.1016/j.jcyt.2016.05.005.
    [28] ABOU-EL-ENEIN M, VOLK HD, REINKE P. Clinical development of cell therapies: setting the stage for academic success[J]. Clin Pharmacol Ther, 2017, 101(1):35-38. DOI: 10.1002/cpt.523.
    [29] MATHEW JM, H-VOSS J, LEFEVER A, et al. A phase I clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants[J]. Sci Rep, 2018, 8(1):7428. DOI: 10.1038/s41598-018-25574-7.
    [30] FRITSCHE E, VOLK HD, REINKE P, et al. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy[J]. Trends Biotechnol, 2020, DOI: 10.1016/j.tibtech.2019.12.009[Epubahead of print].
    [31] HORWITZ DA, PAN S, OU JN, et al. Therapeutic polyclonal human CD8+CD25+Fox3+TNFR2+PD-L1+ regulatory cells induced ex-vivo[J]. Clin Immunol, 2013, 149(3):450-463. DOI: 10.1016/j.clim.2013.08.007.
    [32] PLUSCHKE J, KLAUSING S, HASELOFF A, et al. Determination of intracellular antibody production, cell density, and viability of recombinant CHO-DG44 cells using the MACSQuant Analyzer[J]. BMC Proc, 2011, 5 (Suppl 8):P97. DOI: 10.1186/1753-6561-5-S8-P97.
    [33] MARÍN MORALES JM, MÜNCH N, PETER K, et al. Automated clinical grade expansion of regulatory T cells in a fully closed system[J]. Front Immunol, 2019, 10:38. DOI: 10.3389/fimmu.2019.00038.
    [34] RAMANAYAKE S, BILMON I, BISHOP D, et al. Low-cost generation of good manufacturing practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials[J]. Cytotherapy, 2015, 17(9):1251-1267. DOI: 10.1016/j.jcyt.2015.05.013.
    [35] SINGH H, HULS H, KEBRIAEI P, et al. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19[J]. Immunol Rev, 2014, 257(1):181-190. DOI: 10.1111/imr.12137.
    [36] SÁNCHEZ-FUEYO A, WHITEHOUSE G, GRAGEDA N, et al. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation[J]. Am J Transplant, 2020, 20(4):1125-1136. DOI: 10.1111/ajt.15700.
    [37] BOARDMAN DA, PHILIPPEOS C, FRUHWIRTH GO, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection[J]. Am J Transplant, 2017, 17(4):931-943. DOI: 10.1111/ajt.14185.
    [38] SICARD A, LAMARCHE C, SPECK M, et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients[J]. Am J Transplant, 2020, 20(6):1562-1573. DOI: 10.1111/ajt.15787.
    [39] BOROUGHS AC, LARSON RC, CHOI BD, et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function[J]. JCI Insight, 2019, 5(8):e126194. DOI: 10.1172/jci.insight.126194.
  • 加载中
图(1)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  127
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-23
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-09-15

目录

    /

    返回文章
    返回