留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化合物BAM15减轻大鼠原代肝细胞冷保存损伤的实验研究

张毅 张晓妹 陈良 郑俊 杨卿 傅斌生 刘炜 陈规划

张毅, 张晓妹, 陈良, 等. 化合物BAM15减轻大鼠原代肝细胞冷保存损伤的实验研究[J]. 器官移植, 2019, 10(3): 302-307. doi: 10.3969/j.issn.1674-7445.2019.03.013
引用本文: 张毅, 张晓妹, 陈良, 等. 化合物BAM15减轻大鼠原代肝细胞冷保存损伤的实验研究[J]. 器官移植, 2019, 10(3): 302-307. doi: 10.3969/j.issn.1674-7445.2019.03.013
Zhang Yi, Zhang Xiaomei, Chen Liang, et al. Experimental study of compound BAM15 alleviating cryopreservation-induced primary hepatocyte injury in rats[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 302-307. doi: 10.3969/j.issn.1674-7445.2019.03.013
Citation: Zhang Yi, Zhang Xiaomei, Chen Liang, et al. Experimental study of compound BAM15 alleviating cryopreservation-induced primary hepatocyte injury in rats[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 302-307. doi: 10.3969/j.issn.1674-7445.2019.03.013

化合物BAM15减轻大鼠原代肝细胞冷保存损伤的实验研究

doi: 10.3969/j.issn.1674-7445.2019.03.013
基金项目: 

“十三五”传染病重大专项 2017ZX10203205-006-001

国家重点研发计划 2017YFA0104304

国家自然科学基金 81570593

国家自然科学基金 81670601

国家自然科学基金 81770648

国家自然科学基金 81870449

广东省自然科学基金 2015A030312013

广东省自然科学基金 2016A030313195

广东省自然科学基金 2016A030313224

广东省自然科学基金 2017A030311034

广东省自然科学基金 2018A030313259

广东省科技计划项目 2017B020209004

广东省科技计划项目 20169013

广东省科技计划项目 2017B030314027

广州市科技计划项目 2014Y2-00200

广州市科技计划项目 201604020001

广州市科技计划项目 201508020262

广州市科技计划项目 201400000001-3

广州市科技计划项目 201607010024

张毅、张晓妹为共同第一作者
详细信息
    作者简介:

    张毅,男,1992年生,硕士研究生,研究方向为肝移植,Email:zhangy9456@163.com

    张晓妹,女,1993年生,博士研究生,研究方向为分子医学,Email:Effy180@163.com

    通讯作者:

    刘炜,男,1976年生,博士,副研究员,研究方向为肝移植,Email: lwei6@mail.sysu.edu.cn

    陈规划,男,1955年生,博士,主任医师,研究方向为肝移植,Email: chgh1955@263.net

  • 中图分类号: R617

Experimental study of compound BAM15 alleviating cryopreservation-induced primary hepatocyte injury in rats

More Information
  • 摘要:   目的  探讨化合物BAM15对大鼠离体肝脏原代细胞冷保存损伤的影响。  方法  采用胶原酶灌注法提取大鼠肝脏原代细胞,根据细胞培养条件的不同,将细胞分为4组:A组(含250 nmol/L BAM15的Hibernate细胞培养液);B组(含500 nmol/L BAM15的Hibernate细胞培养液);C组(含1 000 nmol/L BAM15的Hibernate细胞培养液);对照组(Hibernate细胞培养液)。各组细胞均冷保存12 h。荧光显微镜下观察肝脏原代细胞的纯度。同时测定各组细胞的增殖能力、凋亡情况以及线粒体活性氧(ROS)变化情况。  结果  B组和C组的细胞增殖能力均强于对照组(均为P < 0.05)。A、B、C组的细胞凋亡率分别为(33.7±2.2)%、(19.7±1.1)%、(28.7±1.2)%,均明显低于对照组[(82.7±4.2)%,均为P < 0.05]。A、B、C组的细胞内ROS阳性率分别为(11.8±4.0)%、(7.6±1.3)%、(8.9±1.6)%,均明显低于对照组[(27.4±4.5)%,均为P < 0.05]。  结论  化合物BAM15能有效减轻大鼠肝脏原代细胞的冷损伤,其保护机制可能与BAM15减少冷缺血期间ROS生成有关。

     

  • 图  1  大鼠肝脏原代细胞的提取步骤

    A图为通过大鼠肝门静脉插管;B图为Hank' s平衡盐溶液灌注后肝脏开始变得苍白;C图为胶原酶灌注后肝脏变软

    Figure  1.  Extraction steps of primary liver cells of rats

    图  2  大鼠原代肝细胞的鉴定(免疫荧光,×400)

    Figure  2.  Identification of primary liver cells in rats

    图  3  各组肝细胞的增殖情况

    与对照组比较,aP < 0.05

    Figure  3.  Proliferation of liver cells in each group

    图  4  各组肝细胞的凋亡情况(免疫荧光,×200)

    Figure  4.  Apoptosis of liver cells in each group

    图  5  各组肝细胞的增殖情况

    与对照组比较,aP < 0.05

    Figure  5.  Proliferation of liver cells in each group

  • [1] STARZL TE. The long reach of liver transplantation[J]. Nat Med, 2012, 18(10):1489-1492. DOI: 10.1038/nmol/L.2927.
    [2] MEIRELLES JÚNIOR RF, SALVALAGGIO P, REZENDE MB, et al. Liver transplantation: history, outcomes and perspectives[J]. Einstein (Sao Paulo), 2015, 13(1):149-152. DOI: 10.1590/S1679-45082015RW3164.
    [3] GILBO N, MONBALIU D. Temperature and oxygenation during organ preservation: friends or foes? [J]. Curr Opin Organ Transplant, 2017, 22(3):290-299. DOI: 10.1097/MOT.0000000000000416.
    [4] JING L, YAO L, ZHAO M, et al. Organ preservation: from the past to the future[J]. Acta Pharmacol Sin, 2018, 39(5):845-857. DOI: 10.1038/aps.2017.182.
    [5] NIGMET Y, HATA K, TAMAKI I, et al. Human atrial natriuretic peptide in cold storage of donation after circulatory death rat livers: an old but new agent for protecting vascular endothelia? [J]. Transplantation, 2019, 103(3):512-521. DOI: 10.1097/TP.0000000000002552.
    [6] OU J, BALL JM, LUAN Y, et al. iPSCs from a hibernator provide a platform for studying cold adaptation and its potential medical applications[J]. Cell, 2018, 173(4):851-863.e16. DOI: 10.1016/j.cell.2018.03.010.
    [7] YANG Z, CHEN C, ZHAO J, et al. Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in hepatocytes[J]. Eur J Pharmacol, 2018, 820:77-85. DOI: 10.1016/j.ejphar.2017.12.020.
    [8] LATCHANA N, PECK JR, WHITSON BA, et al.Preservation solutions used during abdominal transplantation: current status and outcomes[J]. World J Transplant, 2015, 5(4):154-164. DOI: 10.5500/wjt.v5.i4.154.
    [9] CAMERON AM, BARANDIARAN CORNEJO JF. Organ preservation review: history of organ preservation[J]. Curr Opin Organ Transplant, 2015, 20(2):146-151. DOI: 10.1097/MOT.0000000000000175.
    [10] 王诚, 李选鹏, 郭霜, 等.流体剪切力在移植肾机械灌注中的机制及研究进展[J].器官移植, 2018, 9(2):159-161, 168.DOI: 10.3969/j.issn.1674-7445.2018.02.013.

    WANG C, LI XP, GUO S, et al. The mechanism and research progress of fluid shear force in mechanical perfusion of transplanted kidney[J]. Organ Transplant, 2018, 9(2):159-161, 168. DOI: 10.3969/j.issn.1674-7445.2018.02.013.
    [11] AKATEH C, BEAL EW, KIM JL, et al. Intrahepatic delivery of pegylated catalase is protective in a rat ischemia/reperfusion injury model[J]. J Surg Res, 2019, 238:152-163. DOI: 10.1016/j.jss.2019.01.028.
    [12] BO H, JIANG N, MA G, et al. Regulation of mitochondrial uncoupling respiration during exercise in rat heart: role of reactive oxygen species (ROS) and uncoupling protein 2[J]. Free Radic Biol Med, 2008, 44(7):1373-1381. DOI: 10.1016/j.freeradbiomed.2007.12.033.
    [13] HRYCAY EG, BANDIERA SM. Involvement of cytochrome P450 in reactive oxygen species formation and cancer[J]. Adv Pharmacol, 2015, 74:35-84. DOI: 10.1016/bs.apha.2015.03.003.
    [14] HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cell Physiol Biochem, 2017, 44(2):532-553. DOI: 10.1159/000485089.
    [15] HINDER LM, SAS KM, O' BRIEN PD, et al. Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes[J]. Sci Rep, 2019, 9(1):881. DOI: 10.1038/s41598-018-37376-y.
    [16] JARMUSZKIEWICZ W, SZEWCZYK A. Energy-dissipating hub in muscle mitochondria: potassium channels and uncoupling proteins[J]. Arch Biochem Biophys, 2019, 664:102-109. DOI: 10.1016/j.abb.2019.01.036.
    [17] CHENG WC, TSUI YC, RAGUSA S, et al. Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle[J]. Nat Immunol, 2019, 20(2):206-217. DOI: 10.1038/s41590-018-0290-0.
    [18] SCHIFFER TA, CHRISTENSEN M, GUSTAFSSON H, et al. The effect of inactin on kidney mitochondrial function and production of reactive oxygen species[J]. PLoS One, 2018, 13(11):e0207728. DOI: 10.1371/journal.pone.0207728.
    [19] PITT MA. Overexpression of uncoupling protein-2 in cancer: metabolic and heat changes, inhibition and effects on drug resistance[J]. Inflammopharmacology, 2015, 23(6):365-369. DOI: 10.1007/s10787-015-0250-3.
    [20] LIU Y, YANG L, TAO K, et al. Protective effects of hydrogen enriched saline on liver ischemia reperfusion injury by reducing oxidative stress and HMGB1 release[J]. BMC Gastroenterol, 2014, 14:12. DOI: 10.1186/1471-230X-14-12.
  • 加载中
图(5)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  242
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回