留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Immutol诱导大鼠心脏移植物免疫耐受的研究

杨龙 李先亮 刘焕业 白纯 李瀚 朱继巧 马军 寇建涛 贺强

杨龙, 李先亮, 刘焕业, 等. Immutol诱导大鼠心脏移植物免疫耐受的研究[J]. 器官移植, 2019, 10(3): 288-294. doi: 10.3969/j.issn.1674-7445.2019.03.011
引用本文: 杨龙, 李先亮, 刘焕业, 等. Immutol诱导大鼠心脏移植物免疫耐受的研究[J]. 器官移植, 2019, 10(3): 288-294. doi: 10.3969/j.issn.1674-7445.2019.03.011
Yang Long, Li Xianliang, Liu Huanye, et al. Immutol induces immune tolerance of cardiac grafts in rat models[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 288-294. doi: 10.3969/j.issn.1674-7445.2019.03.011
Citation: Yang Long, Li Xianliang, Liu Huanye, et al. Immutol induces immune tolerance of cardiac grafts in rat models[J]. ORGAN TRANSPLANTATION, 2019, 10(3): 288-294. doi: 10.3969/j.issn.1674-7445.2019.03.011

Immutol诱导大鼠心脏移植物免疫耐受的研究

doi: 10.3969/j.issn.1674-7445.2019.03.011
基金项目: 

国家自然科学基金 81273270

国家自然科学基金 81471590

国家自然科学基金 81571554

杨龙、李先亮为共同第一作者
详细信息
    作者简介:

    杨龙,男,1990年生,硕士,住院医师,研究方向为器官移植诱导免疫耐受,Email:yanglongbjcy@126.com

    通讯作者:

    李先亮,男,1971年生,博士,副主任医师,研究方向为器官移植诱导免疫耐受,Email:lixianliangbjcy@126.com

    贺强,男,1964年生,博士,主任医师,研究方向为器官移植诱导免疫耐受,Email:heqiang349@sina.com

  • 中图分类号: R617, R322.1+1

Immutol induces immune tolerance of cardiac grafts in rat models

More Information
  • 摘要:   目的  探讨Immutol诱导大鼠心脏移植物产生免疫耐受的作用。  方法  建立大鼠腹腔异位心脏移植模型。将受体大鼠分成5组:空白对照组(n=6);DMSO组(n=6),使用二甲基亚砜(DMSO)给药至移植物停搏;Immutol组(n=6),使用Immutol给药至移植物停搏;环孢素(CsA)组(n=10),使用CsA给药20 d后停药;联合实验组(n=13),使用Immutol给药60 d后停药,CsA给药20 d后停药。观察各组大鼠心脏移植物的存活时间和病理学变化;检测各组大鼠血清白细胞介素(IL)-10、干扰素(IFN)- γ的含量,以及心脏组织的吲哚胺2, 3-双加氧酶(IDO)、纤维蛋白原样蛋白2(Fgl2)的信使核糖核酸(mRNA)表达情况。  结果  联合实验组心脏移植物可长期存活,存活时间>180 d,均可诱导产生免疫耐受。联合实验组术后39 d心脏移植物的病理评分明显低于CsA组(P < 0.05)。联合实验组术后9、39 d血清IL-10和IFN- γ含量均明显高于CsA组(均为P < 0.05),联合实验组IL-10和IFN- γ含量随时间延长逐渐升高。联合实验组术后39 d IDO和Fgl2 mRNA表达量明显高于CsA组(均为P < 0.05),联合实验组术后IDO的mRNA表达量呈现逐渐升高的趋势。联合实验组术后180 d Fgl2的mRNA表达量明显高于术后9、39 d(均为P < 0.05)。  结论  Immutol联合CsA可有效抑制急性排斥反应发生,停药后可诱导移植物长期存活,产生免疫耐受。

     

  • 图  1  各组大鼠心脏移植物的病理学改变(HE)

    A~C图为术后9 d Immutol组、CsA组、联合实验组大鼠心脏移植物病理改变;D~E图为术后39 d CsA组、联合实验组大鼠心脏移植物病理改变;F~H图为术后9、39、180 d联合实验组大鼠心脏移植物病理改变;Ⅰ图为各组不同时间点的病理评分,与Immutol组比较,aP < 0.05,与CsA组比较,bP < 0.05,与术后9 d比较,cP < 0.05

    Figure  1.  Pathological changes of heart allografts in each group of rats

    图  2  各组大鼠血清中IL-10和IFN-γ含量的比较

    与Immutol组比较,aP < 0.05;与CsA组比较,bP < 0.05;与术后9 d比较,cP < 0.05;与术后39 d比较,dP < 0.05

    Figure  2.  Comparison of serum levels of IL-10 and IFN-γ in rats among each group

    图  3  各组大鼠IDO和Fgl2的mRNA表达量的比较

    与Immutol组比较,aP < 0.05;与CsA组比较,bP < 0.05;与术后9 d比较,cP < 0.05;与术后39 d比较,dP < 0.05

    Figure  3.  Comparison of mRNA expression levels of IDO and Fgl2 in rats among each group

  • [1] MELLOR AL, MUNN DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism[J]. Nat Rev Immunol, 2004, 4(10):762-774. doi: 10.1038/nri1457
    [2] BELLADONNA ML, PUCCETTI P, ORABONA C, et al. Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes[J]. Transplantation, 2007, 84(1 Suppl):S17-S20.
    [3] TERNESS P, BAUER TM, RÖSE L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2, 3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites[J]. J Exp Med, 2002, 196(4):447-457. doi: 10.1084/jem.20020052
    [4] MUNN DH, SHARMA MD, LEE JR, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2, 3-dioxygenase[J]. Science, 2002, 297(5588):1867-1870. doi: 10.1126/science.1073514
    [5] SONG X, ZHANG Y, ZHANG L, et al. Hypoxia enhances indoleamine 2, 3-dioxygenase production in dendritic cells[J]. Oncotarget, 2018, 9(14):11572-11580. DOI: 10.18632/oncotarget.24098.
    [6] WANG Y, MERCHEN TD, FANG X, et al. Regulation of indoleamine 2, 3 dioxygenase and its role in a porcine model of acute kidney allograft rejection[J]. J Investig Med, 2018, 66(8):1109-1117. DOI: 10.1136/jim-2018-000742.
    [7] FALLARINO F, GROHMANN U, VACCA C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ, 2002, 9(10):1069-1077. doi: 10.1038/sj.cdd.4401073
    [8] FUNESHIMA N, FUJINO M, KITAZAWA Y, et al. Inhibition of allogeneic T-cell responses by dendritic cells expressing transduced indoleamine 2, 3-dioxygenase[J]. J Gene Med, 2005, 7(5):565-575. doi: 10.1002/(ISSN)1521-2254
    [9] HACKSTEIN H, THOMSON AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs[J]. Nat Rev Immunol, 2004, 4(1):24-34. doi: 10.1038/nri1256
    [10] LI C, QI F, LIU T, et al. Improved cuff technique for establishing a mouse-rat heterotopic cardiac xenotransplantation model[J]. Transplant Proc, 2015, 47(6):2026-2031. DOI: 10.1016/j.transproceed.2015.02.028.
    [11] SUCHER R, FISCHLER K, OBERHUBER R, et al. IDO and regulatory T cell support are critical for cytotoxic T lymphocyte-associated Ag-4 Ig-mediated long-term solid organ allograft survival[J]. J Immunol, 2012, 188(1):37-46. DOI: 10.4049/jimmunol.1002777.
    [12] BIANCHI PKFDC, LEANDRO RM, POSCAI AN, et al. Progesterone decreases in vitro indoleamine2, 3-dioxygenase expression in dendritic and CD4+ cells from maternal-fetal interface of rats[J]. Immunol Invest, 2017, 46(5):447-459. DOI: 10.1080/08820139.2017.1296856.
    [13] LI XL, MÉNORET S, BEZIE S, et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance[J]. J Immunol, 2010, 185(2):823-833. DOI: 10.4049/jimmunol.1000120.
    [14] WU Y, YU Z, GONG J, et al. Effects of combined genes of CTLA4Ig and IDO in post-liver transplantation immune tolerance of rats[J]. Ann Hepatol, 2016, 15(5):729-737. DOI: 10.5604/16652681.1212524.
    [15] HE JG, XIE QL, LI BB, et al. Exosomes derived from IDO1-overexpressing rat bone marrow mesenchymal stem cells promote immunotolerance of cardiac allografts[J]. Cell Transplant, 2018, 12:963689718805375. DOI: 10.1177/0963689718805375.
    [16] MELLOR AL, LEMOS H, HUANG L. Indoleamine 2, 3-dioxygenase and tolerance: where are we now? [J]. Front Immunol, 2017, 8:1360. DOI: 10.3389/fimmu.2017.01360.
    [17] WANG Y, LV S, WANG Q, et al. Mechanisms underlying immune tolerance caused by recombinant Echinococcus granulosus antigens Eg mMDH and Eg10 in dendritic cells[J]. PLoS One, 2018, 13(9):e0204868. DOI: 10.1371/journal.pone.0204868.
    [18] DANGI A, ZHANG L, ZHANG X, et al. Murine CMV induces type 1 IFN that impairs differentiation of MDSCs critical for transplantation tolerance[J]. Blood Adv, 2018, 2(6):669-680. DOI: 10.1182/bloodadvances.2017012187.
    [19] ZHANG L, DEBERGE M, WANG J, et al. Receptor tyrosine kinase MerTK suppresses an allogenic type Ⅰ IFN response to promote transplant tolerance[J]. Am J Transplant, 2019, 19(3):674-685. DOI: 10.1111/ajt.15087.
    [20] ROŽMAN P, ŠVAJGER U. The tolerogenic role of IFN-γ[J]. Cytokine Growth Factor Rev, 2018, 41:40-53. DOI: 10.1016/j.cytogfr.2018.04.001.
    [21] HUA F, CHEN Y, YANG Z, et al. Protective action of bone marrow mesenchymal stem cells in immune tolerance of allogeneic heart transplantation by regulating CD45RB+ dendritic cells[J]. Clin Transplant, 2018, 32(4):e13231. DOI: 10.1111/ctr.13231.
  • 加载中
图(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-08
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回