留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾移植基础研究2016年盘点

罗子寰 孙启全

罗子寰, 孙启全. 肾移植基础研究2016年盘点[J]. 器官移植, 2017, 8(1): 15-21. doi: 10.3969/j.issn.1674-7445.2017.01.004
引用本文: 罗子寰, 孙启全. 肾移植基础研究2016年盘点[J]. 器官移植, 2017, 8(1): 15-21. doi: 10.3969/j.issn.1674-7445.2017.01.004

肾移植基础研究2016年盘点

doi: 10.3969/j.issn.1674-7445.2017.01.004
基金项目: 

国家自然科学基金面上项目 81470978

国家自然科学基金面上项目 81270834

广东省科技创新领军人才 2TX01R112015

广东省自然科学基金重点项目 2015A030311040

详细信息
    通讯作者:

    孙启全,Email:sunqiquan@hotmail.com

  • 中图分类号: R617

  • 摘要: 肾移植是提高临床终末期肾病患者生活质量最有效的方法,但是如何改善移植肾的长期预后和解决供体短缺仍是困扰临床医师的两大难题,究其原因还是肾移植基础研究的不足和技术手段的限制。因此,加强肾移植基础机制的研究和技术手段的创新,将有助于我们深入了解移植肾相关疾病的本质,为提高患者移植肾功能和延长移植肾的生存时间提供有力帮助。现就近1年来肾脏移植相关的基础研究的前沿热点及新进展作一综述,本文介绍的研究报道均来自专业领域内的国际核心杂志。

     

  • [1] Baldwin WM 3rd, Valujskikh A, Fairchild RL. Mechanisms of antibody-mediated acute and chronic rejection of kidney allografts[J]. Curr Opin Organ Transplant, 2016, 21(1):7-14. DOI: 10.1097/MOT.0000000000000262.
    [2] Becker LE, Morath C, Suesal C. Immune mechanisms of acute and chronic rejection[J]. Clin Biochem, 2016, 49(4/5):320-323. DOI: 10.1016/j.clinbiochem.2016.02.001.
    [3] Zhuang Q, Liu Q, Divito SJ, et al. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection[J]. Nat Commun, 2016, 7:12623. DOI: 10.1038/ncomms12623.
    [4] Gorbacheva V, Fan R, Fairchild RL, et al. Memory CD4 T cells induce antibody-mediated rejection of renal allografts[J]. J Am Soc Nephrol, 2016, 27(11):3299-3307. doi: 10.1681/ASN.2015080848
    [5] Dean PG, Griffin MD. Bad. emory: CD4 T cell presensitization fosters antibody-mediated kidney transplant rejection[J]. J Am Soc Nephrol, 2016, 27 (11):3231-3233.
    [6] Legris T, Picard C, Todorova D, et al. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies[J]. Front Immunol, 2016, 7:288. DOI: 10.3389/fimmu.2016.00288.
    [7] Kohei N, Tanaka T, Tanabe K, et al. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts[J]. Kidney Int, 2016, 89(6):1293-1306. DOI: 10.1016/j.kint.2016.02.030.
    [8] Lin CM, Plenter RJ, Coulombe M, et al. Interferon gamma and contact-dependent cytotoxicity are each rate limiting for natural killer cell-mediated antibody-dependent chronic rejection[J]. Am J Transplant, 2016, 16(11):3121-3130. DOI: 10.1111/ajt.13865.
    [9] Levine MH, Wang Z, Xiao H, et al. Targeting Sirtuin-1 prolongs murine renal allograft survival and function[J]. Kidney Int, 2016, 89(5):1016-1026. DOI: 10.1016/j.kint.2015.12.051.
    [10] Fairchild RL. Juicing Tregs in situ to improve kidney allograft outcomes[J]. Kidney Int, 2016, 89(5):976-978. DOI: 10.1016/j.kint.2016.01.020.
    [11] Saha A, O'Connor RS, Thangavelu G, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality[J]. J Clin Invest, 2016, 126(7):2642-2660. DOI: 10.1172/JCI85796.
    [12] Chesneau M, Michel L, Dugast E, et al. Tolerant kidney transplant patients produce B cells with regulatory properties[J]. J Am Soc Nephrol, 2015, 26(10):2588-2598. DOI: 10.1681/ASN.2014040404.
    [13] Strober S. Use of hematopoietic cell transplants to achieve tolerance inpatients with solid organ transplants[J]. Blood, 2016, 127(12):1539-1543. DOI: 10.1182/blood-2015-12-685107.
    [14] Hotta K, Aoyama A, Oura T, et al. Induced regulatory T cells in allograft tolerance via transient mixed chimerism[J]. JCI Insight, 2016, 1(10).
    [15] Hu M, Wang YM, Wang Y, et al. Regulatory T cells in kidney disease and transplantation[J]. Kidney Int, 2016, 90(3):502-514. DOI: 10.1016/j.kint.2016.03.022.
    [16] Petrelli A, Tresoldi E, Mfarrej BG, et al. Generation of donor-specific T regulatory type 1 cells from patients on dialysis for cell therapy after kidney transplantation[J]. Transplantation, 2015, 99(8):1582-1589. DOI: 10.1097/TP.0000000000000751.
    [17] van der Net JB, Bushell A, Wood KJ, et al. Regulatory T cells: first steps of clinical application in solid organ transplantation[J]. Transpl Int, 2016, 29(1):3-11. DOI: 10.1111/tri.12608.
    [18] Bushell AR, van der Net J, Game DS, et al. The UK ONE Study trial:satety and feasibility of Treg therapy in renal transplantation[J]. Transplantation, 2016, 100(7S):S120. DOI: 10.1111/tri.12608.
    [19] MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor[J]. J Clin Invest, 2016, 126(4):1413-1424. DOI: 10.1172/JCI82771.
    [20] Edinger M. Driving allotolerance: CAR-expressing Tregs for tolerance induction in organ and stem cell transplantation[J]. J Clin Invest, 2016, 126(4):1248-1250. DOI: 10.1172/JCI86827.
    [21] Bézie S, Picarda E, Ossart J, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance[J]. J Clin Invest, 2015, 125(10):3952-3964. DOI: 10.1172/JCI81227.
    [22] Kim JI, Turka LA. Transplant tolerance: a new role for IL-34[J]. J Clin Invest, 2015, 125(10):3751-3753. DOI: 10.1172/JCI84010.
    [23] Gonzalez-Martin A, Adams BD, Lai M, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity[J]. Nat Immunol, 2016, 17(4):433-440. DOI: 10.1038/ni.3385.
    [24] Montero RM, Sacks SH, Smith RA. Complement-here, there and everywhere, but what about the transplanted organ?[J]. Semin Immunol, 2016, 28(3):250-259. DOI: 10.1016/j.smim.2016.04.007.
    [25] Aufhauser DD Jr, Wang Z, Murken DR, et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes[J]. J Clin Invest, 2016, 126(5):1968-1977. DOI: 10.1172/JCI84712.
    [26] Noel S, Desai NM, Hamad AR, et al. Sex and the single transplanted kidney[J]. J Clin Invest, 2016, 126(5):1643-1645. DOI: 10.1172/JCI87428.
    [27] Wyatt CM, Coates PT, Reeves WB. Of mice and women: do sex-dependent responses to ischemia-reperfusion injury in rodents have implications for delayed graft function in humans?[J]. Kidney Int, 2016, 90(1):10-13. DOI: 10.1016/j.kint.2016.05.008.
    [28] Hosszu A, Antal Z, Lenart L, et al. σ1-receptor agonism protects against renal ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2016, DOI: 10.1681/ASN.2015070772 [Epub ahead of print].
    [29] Zhang J, Han C, Dai H, et al. Hypoxia-inducible factor-2α limits natural killer T cell cytotoxicity in renal ischemia/reperfusion injury[J]. J Am Soc Nephrol, 2016, 27(1):92-106. DOI: 10.1681/ASN.2014121248.
    [30] Amrouche L, Desbuissons G, Rabant M, et al. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action[J]. J Am Soc Nephrol, 2016, DOI:10.1681/ASN.2016010045 [Epub ahead of print].
    [31] Rogers NM, Zhang ZJ, Wang JJ, et al. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion[J]. Kidney Int, 2016, 90(2):334-347. DOI: 10.1016/j.kint.2016.03.034.
    [32] Karim AS, Reese SR, Wilson NA, et al. Nox2 is a mediator of ischemia reperfusion injury[J]. Am J Transplant, 2015, 15(11): 2888-2899. DOI: 10.1111/ajt.13368.
    [33] Farrar CA, Zhou W, Sacks SH. Role of the lectin complement pathway in kidney transplantation[J]. Immunobiology, 2016, 221(10):1068-1072. DOI: 10.1016/j.imbio.2016.05.004.
    [34] Qin L, Li G, Kirkiles-Smith N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, DOI: 10.1111/ajt.13834 [Epub ahead of print].
    [35] Yu ZX, Qi S, Lasaro MA, et al. Targeting complement pathways during cold ischemia and reperfusion prevents delayed graft function[J]. Am J Transplant, 2016, 16(9):2589-2597. DOI: 10.1111/ajt.13797.
    [36] Castellano G, Intini A, Stasi A, et al. Complement modulation of anti-aging factor Klotho in ischemia/reperfusion injury and delayed graft function[J]. Am J Transplant, 2016, 16(1):325-333. DOI: 10.1111/ajt.13415.
    [37] Allen MB, Reese PP. Transforming living kidney donation with a comprehensive strategy[J]. PLoS Med, 2016, 13(2):e1001948. DOI: 10.1371/journal.pmed.1001948.
    [38] Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses[J]. Clin Microbiol Rev, 2012, 25(2):318-343. DOI: 10.1128/CMR.05011-11.
    [39] Doudna JA, Charpentier E. Genome editing. the new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. DOI: 10.1126/science.1258096.
    [40] Yang L, Güell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264):1101-1104. DOI: 10.1126/science.aad1191.
    [41] Jarchum I. Getting rid of PERVs[J]. Nat Biotechnol, 2016, 34(1):46. DOI: 10.1038/nbt.3448.
    [42] Salomon DR. A CRISPR way to block PERVs--engineering organs for transplantation[J]. N Engl J Med, 2016, 374(11):1089-1091. DOI: 10.1056/NEJMcibr1515623.
    [43] Butler JR, Martens GR, Estrada JL, et al. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation[J]. Transgenic Res, 2016, 25(5):751-759. DOI: 10.1007/s11248-016-9958-0.
    [44] Kang JT, Cho B, Ryu J, et al. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs[J]. Reprod Biol Endocrinol, 2016, 14(1):74. DOI: 10.1186/s12958-016-0206-5.
    [45] Butler JR, Martens GR, Li P, et al. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs[J]. J Surg Res, 2016, 200(2):698-706. DOI: 10.1016/j.jss.2015.08.034.
    [46] Baan CC. Basic sciences in development: What changes will we see in transplantation in the next five years?[J]. Transplantation, 2016, DOI: 10.1097/TP.0000000000001518 [Epub ahead of print].
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  38
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-20
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回